Spaces:
Running
Running
roni
commited on
Commit
·
e873d33
1
Parent(s):
7217cfd
App switched to use Milvus instead of Annoy
Browse files- Makefile +1 -1
- app.py +22 -13
- get_index.py +0 -36
- index_list.py +11 -0
- pylintrc +0 -20
- requirements-dev.txt +1 -1
- requirements.txt +2 -1
- search_engine.py +113 -0
Makefile
CHANGED
@@ -12,4 +12,4 @@ check-formatting:
|
|
12 |
venv/bin/black --check .
|
13 |
|
14 |
lint-python:
|
15 |
-
venv/bin/
|
|
|
12 |
venv/bin/black --check .
|
13 |
|
14 |
lint-python:
|
15 |
+
venv/bin/ruff .
|
app.py
CHANGED
@@ -1,31 +1,40 @@
|
|
1 |
import collections
|
|
|
2 |
from typing import Dict, List
|
3 |
|
4 |
import gradio as gr
|
5 |
|
6 |
-
from
|
7 |
from protein_viz import get_pdb_title, render_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
index_repo = "ronig/protein_index"
|
10 |
-
model_repo = "ronig/protein_search_engine"
|
11 |
-
engines = get_engines(index_repo, model_repo)
|
12 |
-
available_indexes = list(engines.keys())
|
13 |
-
app_description = """
|
14 |
-
# Protein Binding Search Engine
|
15 |
-
This application enables a quick protein-peptide binding search based on sequences.
|
16 |
-
You can use it to search the full [PDB](https://www.rcsb.org/) database or in a specific organism genome.
|
17 |
-
"""
|
18 |
max_results = 1000
|
19 |
choice_sep = " | "
|
20 |
max_seq_length = 50
|
21 |
|
22 |
|
23 |
def search_and_display(seq, max_res, index_selection):
|
24 |
-
n_search_res =
|
25 |
_validate_sequence_length(seq)
|
26 |
max_res = int(limit_n_results(max_res))
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
agg_search_results = aggregate_search_results(search_res, max_res)
|
30 |
formatted_search_results = format_search_results(agg_search_results)
|
31 |
results_options = update_dropdown_menu(agg_search_results)
|
|
|
1 |
import collections
|
2 |
+
import os
|
3 |
from typing import Dict, List
|
4 |
|
5 |
import gradio as gr
|
6 |
|
7 |
+
from index_list import read_index_list
|
8 |
from protein_viz import get_pdb_title, render_html
|
9 |
+
from search_engine import MilvusParams, ProteinSearchEngine
|
10 |
+
|
11 |
+
model_repo = "ronig/protein_biencoder"
|
12 |
+
|
13 |
+
available_indexes = read_index_list()
|
14 |
+
engine = ProteinSearchEngine(
|
15 |
+
milvus_params=MilvusParams(
|
16 |
+
uri="https://in03-ddab8e9a5a09fcc.api.gcp-us-west1.zillizcloud.com",
|
17 |
+
token=os.environ.get("MILVUS_TOKEN"),
|
18 |
+
db_name="Protein",
|
19 |
+
collection_name="Peptriever",
|
20 |
+
),
|
21 |
+
model_repo=model_repo,
|
22 |
+
)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
max_results = 1000
|
25 |
choice_sep = " | "
|
26 |
max_seq_length = 50
|
27 |
|
28 |
|
29 |
def search_and_display(seq, max_res, index_selection):
|
30 |
+
n_search_res = 1024
|
31 |
_validate_sequence_length(seq)
|
32 |
max_res = int(limit_n_results(max_res))
|
33 |
+
if index_selection == "All Species":
|
34 |
+
index_selection = None
|
35 |
+
search_res = engine.search_by_sequence(
|
36 |
+
seq, n=n_search_res, organism=index_selection
|
37 |
+
)
|
38 |
agg_search_results = aggregate_search_results(search_res, max_res)
|
39 |
formatted_search_results = format_search_results(agg_search_results)
|
40 |
results_options = update_dropdown_menu(agg_search_results)
|
get_index.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import os.path
|
2 |
-
import sys
|
3 |
-
from glob import glob
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
from huggingface_hub import snapshot_download
|
7 |
-
|
8 |
-
from credentials import get_token
|
9 |
-
|
10 |
-
|
11 |
-
def get_engines(index_repo: str, model_repo: str):
|
12 |
-
index_path = Path(
|
13 |
-
snapshot_download(index_repo, use_auth_token=get_token(), repo_type="dataset")
|
14 |
-
)
|
15 |
-
|
16 |
-
local_arch_path = Path(
|
17 |
-
snapshot_download(model_repo, use_auth_token=get_token(), repo_type="model")
|
18 |
-
)
|
19 |
-
sys.path.append(str(local_arch_path))
|
20 |
-
from protein_index import ( # pylint: disable=import-error,import-outside-toplevel
|
21 |
-
ProteinSearchEngine,
|
22 |
-
ProteinIndexError,
|
23 |
-
)
|
24 |
-
|
25 |
-
subindex_paths = glob(str(index_path / "*/"))
|
26 |
-
engines = {}
|
27 |
-
for subindex_path in subindex_paths:
|
28 |
-
subindex_name = os.path.basename(subindex_path)
|
29 |
-
try:
|
30 |
-
engine = ProteinSearchEngine(data_path=Path(subindex_path))
|
31 |
-
if len(engine) > 1000:
|
32 |
-
engines[subindex_name] = engine
|
33 |
-
except ProteinIndexError:
|
34 |
-
...
|
35 |
-
|
36 |
-
return engines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index_list.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
|
3 |
+
|
4 |
+
def read_index_list():
|
5 |
+
here = os.path.dirname(__file__)
|
6 |
+
fname = os.path.join(here, "available_organisms.txt")
|
7 |
+
indexes = ["All Species"]
|
8 |
+
with open(fname) as f:
|
9 |
+
for index in f:
|
10 |
+
indexes.append(index.strip())
|
11 |
+
return indexes
|
pylintrc
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
[MESSAGES CONTROL]
|
2 |
-
disable=missing-docstring,invalid-name,logging-fstring-interpolation
|
3 |
-
|
4 |
-
[DESIGN]
|
5 |
-
min-public-methods=1
|
6 |
-
|
7 |
-
[FORMAT]
|
8 |
-
max-line-length=88
|
9 |
-
|
10 |
-
[SIMILARITIES]
|
11 |
-
min-similarity-lines=10
|
12 |
-
|
13 |
-
[TYPECHECK]
|
14 |
-
|
15 |
-
[MASTER]
|
16 |
-
init-hook=import sys; sys.path.append(".")
|
17 |
-
extension-pkg-whitelist=pydantic,cassandra
|
18 |
-
generated-members=torch.*,cv2.*,np.random.*
|
19 |
-
ignore-patterns=setup,py,tasks.py
|
20 |
-
max-args=6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements-dev.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
pytest
|
2 |
-
|
3 |
black
|
4 |
mypy
|
5 |
huggingface_hub
|
|
|
1 |
pytest
|
2 |
+
ruff
|
3 |
black
|
4 |
mypy
|
5 |
huggingface_hub
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch
|
2 |
transformers
|
3 |
annoy
|
4 |
-
mygene
|
|
|
|
1 |
torch
|
2 |
transformers
|
3 |
annoy
|
4 |
+
mygene
|
5 |
+
pymilvus
|
search_engine.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import math
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from pymilvus import MilvusClient, connections
|
7 |
+
from transformers import AutoModel, AutoTokenizer
|
8 |
+
|
9 |
+
from credentials import get_token
|
10 |
+
|
11 |
+
|
12 |
+
@dataclasses.dataclass
|
13 |
+
class MilvusParams:
|
14 |
+
uri: str
|
15 |
+
token: str
|
16 |
+
db_name: str
|
17 |
+
collection_name: str
|
18 |
+
|
19 |
+
|
20 |
+
class ProteinSearchEngine:
|
21 |
+
n_dims = 128
|
22 |
+
dist_metric = "euclidean"
|
23 |
+
max_lengths = (30, 300)
|
24 |
+
|
25 |
+
def __init__(self, milvus_params: MilvusParams, model_repo: str):
|
26 |
+
self.model_repo = model_repo
|
27 |
+
self.milvus_params = milvus_params
|
28 |
+
connections.connect(
|
29 |
+
"default",
|
30 |
+
uri=milvus_params.uri,
|
31 |
+
token=milvus_params.token,
|
32 |
+
db_name=milvus_params.db_name,
|
33 |
+
)
|
34 |
+
self.client = MilvusClient(uri=milvus_params.uri, token=milvus_params.token)
|
35 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
self.model_repo, use_auth_token=get_token()
|
37 |
+
)
|
38 |
+
self.model = AutoModel.from_pretrained(
|
39 |
+
self.model_repo, use_auth_token=get_token(), trust_remote_code=True
|
40 |
+
)
|
41 |
+
self.model.eval()
|
42 |
+
|
43 |
+
def search_by_sequence(self, sequence: str, n: int, organism: Optional[str] = None):
|
44 |
+
max_length = self.max_lengths[0]
|
45 |
+
vec = self._embed_sequence(max_length, sequence)
|
46 |
+
response = self.search(vec, n_results=n, is_peptide=False, organism=organism)
|
47 |
+
search_results = self._format_search_results(response)
|
48 |
+
return search_results
|
49 |
+
|
50 |
+
def _embed_sequence(self, max_length, sequence):
|
51 |
+
encoded = self.tokenizer.encode_plus(
|
52 |
+
sequence,
|
53 |
+
add_special_tokens=True,
|
54 |
+
truncation=True,
|
55 |
+
max_length=max_length,
|
56 |
+
padding="max_length",
|
57 |
+
return_tensors="pt",
|
58 |
+
)
|
59 |
+
with torch.no_grad():
|
60 |
+
vec = (
|
61 |
+
self.model.forward1(encoded.to(self.model.device))
|
62 |
+
.squeeze()
|
63 |
+
.cpu()
|
64 |
+
.numpy()
|
65 |
+
)
|
66 |
+
return vec
|
67 |
+
|
68 |
+
def _format_search_results(self, response):
|
69 |
+
search_results = []
|
70 |
+
max_dist = math.sqrt(2 * self.n_dims)
|
71 |
+
for res in response:
|
72 |
+
entry = res["entity"]
|
73 |
+
dist = math.sqrt(res["distance"])
|
74 |
+
entry["dist"] = dist
|
75 |
+
entry["score"] = (max_dist - dist) / max_dist
|
76 |
+
search_results.append(entry)
|
77 |
+
return search_results
|
78 |
+
|
79 |
+
def search(
|
80 |
+
self,
|
81 |
+
vec: List[float],
|
82 |
+
n_results: int,
|
83 |
+
is_peptide: bool,
|
84 |
+
organism: Optional[str] = None,
|
85 |
+
):
|
86 |
+
is_peptide = bool(is_peptide)
|
87 |
+
filter_str = f"is_peptide == {is_peptide}"
|
88 |
+
if organism is not None:
|
89 |
+
filter_str += f" and organism == '{organism}'"
|
90 |
+
|
91 |
+
results = self.client.search(
|
92 |
+
collection_name=self.milvus_params.collection_name,
|
93 |
+
data=[vec],
|
94 |
+
limit=n_results,
|
95 |
+
output_fields=[
|
96 |
+
"genes",
|
97 |
+
"uniprot_id",
|
98 |
+
"pdb_name",
|
99 |
+
"chain_id",
|
100 |
+
"is_peptide",
|
101 |
+
"organism",
|
102 |
+
],
|
103 |
+
filter=filter_str,
|
104 |
+
)
|
105 |
+
return results[0]
|
106 |
+
|
107 |
+
def get_organisms(self):
|
108 |
+
res = self.client.query(
|
109 |
+
collection_name=self.milvus_params.collection_name,
|
110 |
+
output_fields=["organism"],
|
111 |
+
filter="entry_id > 0",
|
112 |
+
)
|
113 |
+
return res
|