rolpotamias commited on
Commit
0366176
·
verified ·
1 Parent(s): f165a11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -51
app.py CHANGED
@@ -20,7 +20,7 @@ from wilor.models import WiLoR, load_wilor
20
  from wilor.utils import recursive_to
21
  from wilor.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
22
  from wilor.utils.renderer import Renderer, cam_crop_to_full
23
- device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
24
 
25
  LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
26
 
@@ -59,70 +59,70 @@ def run_wilow_model(image, conf, IoU_threshold=0.5):
59
  cv2.rectangle(img_vis, (int(Bbox[0]), int(Bbox[1]) - 20), (int(Bbox[0]) + w, int(Bbox[1])), color, -1)
60
  cv2.putText(img_vis, label, (int(Bbox[0]), int(Bbox[1]) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 2)
61
 
62
- # if len(bboxes) != 0:
63
- # boxes = np.stack(bboxes)
64
- # right = np.stack(is_right)
65
- # dataset = ViTDetDataset(model_cfg, img_cv2, boxes, right, rescale_factor=2.0 )
66
- # dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False, num_workers=0)
67
 
68
- # all_verts = []
69
- # all_cam_t = []
70
- # all_right = []
71
- # all_joints= []
72
 
73
- # for batch in dataloader:
74
- # batch = recursive_to(batch, device)
75
 
76
- # with torch.no_grad():
77
- # out = model(batch)
78
 
79
- # multiplier = (2*batch['right']-1)
80
- # pred_cam = out['pred_cam']
81
- # pred_cam[:,1] = multiplier*pred_cam[:,1]
82
- # box_center = batch["box_center"].float()
83
- # box_size = batch["box_size"].float()
84
- # img_size = batch["img_size"].float()
85
- # scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
86
- # pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
87
 
88
- # # Render the result
89
- # all_verts = []
90
- # all_cam_t = []
91
- # all_right = []
92
- # all_joints = []
93
 
94
- # batch_size = batch['img'].shape[0]
95
- # for n in range(batch_size):
96
 
97
- # verts = out['pred_vertices'][n].detach().cpu().numpy()
98
- # joints = out['pred_keypoints_3d'][n].detach().cpu().numpy()
99
 
100
- # is_right = batch['right'][n].cpu().numpy()
101
- # verts[:,0] = (2*is_right-1)*verts[:,0]
102
- # joints[:,0] = (2*is_right-1)*joints[:,0]
103
 
104
- # cam_t = pred_cam_t_full[n]
105
 
106
- # all_verts.append(verts)
107
- # all_cam_t.append(cam_t)
108
- # all_right.append(is_right)
109
- # all_joints.append(joints)
110
- # # Render front view
111
 
112
- # misc_args = dict(
113
- # mesh_base_color=LIGHT_PURPLE,
114
- # scene_bg_color=(1, 1, 1),
115
- # focal_length=scaled_focal_length,
116
- # )
117
- # cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], is_right=all_right, **misc_args)
118
 
119
- # # Overlay image
120
 
121
- # input_img = img_vis.astype(np.float32)/255.0
122
- # input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
123
- # input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
124
 
125
- image = img_vis #input_img_overlay
126
  return image, f'{len(detections)} hands detected'
127
 
128
 
 
20
  from wilor.utils import recursive_to
21
  from wilor.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
22
  from wilor.utils.renderer import Renderer, cam_crop_to_full
23
+ device = torch.device('cpu') #if torch.cuda.is_available() else torch.device('cpu')
24
 
25
  LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
26
 
 
59
  cv2.rectangle(img_vis, (int(Bbox[0]), int(Bbox[1]) - 20), (int(Bbox[0]) + w, int(Bbox[1])), color, -1)
60
  cv2.putText(img_vis, label, (int(Bbox[0]), int(Bbox[1]) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 2)
61
 
62
+ if len(bboxes) != 0:
63
+ boxes = np.stack(bboxes)
64
+ right = np.stack(is_right)
65
+ dataset = ViTDetDataset(model_cfg, img_cv2, boxes, right, rescale_factor=2.0 )
66
+ dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=False, num_workers=0)
67
 
68
+ all_verts = []
69
+ all_cam_t = []
70
+ all_right = []
71
+ all_joints= []
72
 
73
+ for batch in dataloader:
74
+ batch = recursive_to(batch, device)
75
 
76
+ with torch.no_grad():
77
+ out = model(batch)
78
 
79
+ multiplier = (2*batch['right']-1)
80
+ pred_cam = out['pred_cam']
81
+ pred_cam[:,1] = multiplier*pred_cam[:,1]
82
+ box_center = batch["box_center"].float()
83
+ box_size = batch["box_size"].float()
84
+ img_size = batch["img_size"].float()
85
+ scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
86
+ pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
87
 
88
+ # Render the result
89
+ all_verts = []
90
+ all_cam_t = []
91
+ all_right = []
92
+ all_joints = []
93
 
94
+ batch_size = batch['img'].shape[0]
95
+ for n in range(batch_size):
96
 
97
+ verts = out['pred_vertices'][n].detach().cpu().numpy()
98
+ joints = out['pred_keypoints_3d'][n].detach().cpu().numpy()
99
 
100
+ is_right = batch['right'][n].cpu().numpy()
101
+ verts[:,0] = (2*is_right-1)*verts[:,0]
102
+ joints[:,0] = (2*is_right-1)*joints[:,0]
103
 
104
+ cam_t = pred_cam_t_full[n]
105
 
106
+ all_verts.append(verts)
107
+ all_cam_t.append(cam_t)
108
+ all_right.append(is_right)
109
+ all_joints.append(joints)
110
+ # Render front view
111
 
112
+ misc_args = dict(
113
+ mesh_base_color=LIGHT_PURPLE,
114
+ scene_bg_color=(1, 1, 1),
115
+ focal_length=scaled_focal_length,
116
+ )
117
+ cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], is_right=all_right, **misc_args)
118
 
119
+ # Overlay image
120
 
121
+ input_img = img_vis.astype(np.float32)/255.0
122
+ input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
123
+ input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
124
 
125
+ image = input_img_overlay
126
  return image, f'{len(detections)} hands detected'
127
 
128