import streamlit as st from transformers import pipeline # Set up the title and description of the app st.title("My LLM Model: Dementia Knowledge Assistant") st.markdown(""" This app uses a fine-tuned **Large Language Model (LLM)** to answer questions about dementia. Simply input your query, and the model will provide contextually relevant answers! """) # Load the model @st.cache_resource def load_qa_pipeline(): model_name = "rohitashva/dementia-chatbot-llm-model" # Replace with your Hugging Face model repo name qa_pipeline = pipeline("text-generation", model=model_name) return qa_pipeline qa_pipeline = load_qa_pipeline() # Input field for user query st.header("Ask a Question") question = st.text_input("Enter your question about dementia (e.g., 'What are the symptoms of early-stage dementia?'):") # Context input for retrieval st.text_area( "Provide additional context (optional):", placeholder="Include any relevant context about dementia here to get better results.", key="context" ) if st.button("Get Answer"): if not question: st.error("Please enter a question!") else: # Call the QA pipeline with st.spinner("Generating response..."): result = qa_pipeline({ "question": question, "context": st.session_state.context }) answer = result.get("answer", "I don't know.") confidence = result.get("score", 0.0) # Display the result st.subheader("Answer") st.write(answer) st.subheader("Confidence Score") st.write(f"{confidence:.2f}") # Footer st.markdown("---") st.markdown("Deployed on **Hugging Face Spaces** using [Streamlit](https://streamlit.io/).")