Spaces:
Sleeping
Create new version (#2)
Browse files* flood_mapper update
* include flood extent computations
* Edits Piet 09/09
* Piet updates Mapoutput
* Piet update Output
* added icon in map
* Update layout, move parameters to sidebar.
* Design updates; tabs for input output, css, font
* updates on tabs
* Download button attempt
* update output text
* Add dynamic maps
* change slider
* large update on download button
* Ras and Vec download and change in layout
* create new version
* create docs
* create docs and fix bugs
* increase font size text
* fix typos and add docstrings and comments to code
* fix typo
* fix text fontsize
* update Readme, add pre-commit and license
* update readme
* update readme
* add config file
* add usage to readme
* change project structure
* reformat text
* .DS_Store banished
* .DS_Store banished
* update readme
* update pre-commit file
* update requirements
* reformat text again
* update readme
* update readme
* update setup
* change position caption in docs
* correct broken urls
* update readme
* update readme and gitignore
* Update README.md
Co-authored-by: pjgerrits <[email protected]>
Co-authored-by: pjgerrits <[email protected]>
- .DS_Store +0 -0
- .gitignore +6 -0
- .pre-commit-config.yaml +42 -0
- Home.py +0 -50
- LICENSE +0 -0
- Procfile +0 -1
- README.md +62 -1
- app-bk.py +0 -19
- app.py +0 -50
- app/Home.py +133 -0
- app/img/MA-logo.png +0 -0
- app/img/workflow.png +0 -0
- app/pages/1_π_Flood_extent_analysis.py +331 -0
- app/pages/2_π_Documentation.py +177 -0
- app/src/__init__.py +1 -0
- app/src/config_parameters.py +72 -0
- app/src/utils_flood_analysis.py +369 -0
- app/src/utils_sidebar.py +180 -0
- apps/gee_datasets.py +0 -186
- apps/rois.py +0 -174
- apps/timelapse.py +0 -1313
- data/cog_files.txt +0 -77
- data/html/sfo_buildings.html +0 -34
- data/realtor_data_dict.csv +0 -37
- data/scotland_xyz.tsv +0 -51
- data/us_counties.geojson +0 -0
- data/us_metro_areas.geojson +0 -0
- data/us_nation.geojson +0 -0
- data/us_states.geojson +0 -0
- environment-bk.yml +0 -17
- index.html +0 -39
- multiapp.py +0 -75
- packages.txt +0 -9
- pages/.DS_Store +0 -0
- pages/10_π_Earth_Engine_Datasets.py +0 -144
- pages/11_π§±_Ordnance_Survey.py +0 -110
- pages/12_π²_Land_Cover_Mapping.py +0 -113
- pages/1_π·_Timelapse.py +0 -1517
- pages/2_π _U.S._Housing.py +0 -484
- pages/3_πͺ_Split_Map.py +0 -32
- pages/4_π₯_Heatmap.py +0 -36
- pages/5_π_Marker_Cluster.py +0 -42
- pages/6_πΊοΈ_Basemaps.py +0 -62
- pages/7_π¦_Web_Map_Service.py +0 -89
- pages/8_ποΈ_Raster_Data_Visualization.py +0 -108
- pages/9_π²_Vector_Data_Visualization.py +0 -118
- postBuild +0 -6
- pyproject.toml +6 -0
- requirements.txt +6 -18
- setup.cfg +6 -0
Binary file (6.15 kB)
|
|
@@ -127,3 +127,9 @@ dmypy.json
|
|
127 |
|
128 |
# Pyre type checker
|
129 |
.pyre/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Pyre type checker
|
129 |
.pyre/
|
130 |
+
|
131 |
+
# MacOS hidden folder
|
132 |
+
.DS_Store
|
133 |
+
|
134 |
+
# GEE authentication keys
|
135 |
+
.private-key.json
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_language_version:
|
2 |
+
python: python3.10
|
3 |
+
|
4 |
+
repos:
|
5 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
6 |
+
rev: v4.0.1
|
7 |
+
hooks:
|
8 |
+
- id: trailing-whitespace
|
9 |
+
- id: end-of-file-fixer
|
10 |
+
- id: check-ast
|
11 |
+
- id: check-toml
|
12 |
+
- id: check-yaml
|
13 |
+
- repo: https://github.com/psf/black
|
14 |
+
rev: 22.3.0
|
15 |
+
hooks:
|
16 |
+
- id: black
|
17 |
+
- repo: https://github.com/PyCQA/isort
|
18 |
+
rev: 5.9.3
|
19 |
+
hooks:
|
20 |
+
- id: isort
|
21 |
+
- repo: https://github.com/pycqa/flake8
|
22 |
+
rev: 3.9.2
|
23 |
+
hooks:
|
24 |
+
- id: flake8
|
25 |
+
additional_dependencies:
|
26 |
+
- flake8-bugbear==21.9.2
|
27 |
+
- flake8-comprehensions==3.6.1
|
28 |
+
- flake8-deprecated==1.3
|
29 |
+
- flake8-docstrings==1.6.0
|
30 |
+
- flake8-implicit-str-concat==0.2.0
|
31 |
+
- flake8-keyword-arguments==0.1.0
|
32 |
+
- flake8-print==4.0.0
|
33 |
+
- flake8-sfs==0.0.3
|
34 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
35 |
+
rev: v0.910
|
36 |
+
hooks:
|
37 |
+
- id: mypy
|
38 |
+
additional_dependencies:
|
39 |
+
- types-PyYAML==5.4.10
|
40 |
+
- types-setuptools==57.4.0
|
41 |
+
- types-requests==2.25.9
|
42 |
+
exclude: tests
|
@@ -1,50 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.title("About")
|
7 |
-
st.sidebar.info(
|
8 |
-
"""
|
9 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
10 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
11 |
-
"""
|
12 |
-
)
|
13 |
-
|
14 |
-
st.sidebar.title("Contact")
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
Qiusheng Wu: <https://wetlands.io>
|
18 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.title("Streamlit for Geospatial Applications")
|
23 |
-
|
24 |
-
st.markdown(
|
25 |
-
"""
|
26 |
-
This multi-page web app demonstrates various interactive web apps created using [streamlit](https://streamlit.io) and open-source mapping libraries,
|
27 |
-
such as [leafmap](https://leafmap.org), [geemap](https://geemap.org), [pydeck](https://deckgl.readthedocs.io), and [kepler.gl](https://docs.kepler.gl/docs/keplergl-jupyter).
|
28 |
-
This is an open-source project and you are very welcome to contribute your comments, questions, resources, and apps as [issues](https://github.com/giswqs/streamlit-geospatial/issues) or
|
29 |
-
[pull requests](https://github.com/giswqs/streamlit-geospatial/pulls) to the [GitHub repository](https://github.com/giswqs/streamlit-geospatial).
|
30 |
-
|
31 |
-
"""
|
32 |
-
)
|
33 |
-
|
34 |
-
st.info("Click on the left sidebar menu to navigate to the different apps.")
|
35 |
-
|
36 |
-
st.subheader("Timelapse of Satellite Imagery")
|
37 |
-
st.markdown(
|
38 |
-
"""
|
39 |
-
The following timelapse animations were created using the Timelapse web app. Click `Timelapse` on the left sidebar menu to create your own timelapse for any location around the globe.
|
40 |
-
"""
|
41 |
-
)
|
42 |
-
|
43 |
-
row1_col1, row1_col2 = st.columns(2)
|
44 |
-
with row1_col1:
|
45 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/spain.gif")
|
46 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/las_vegas.gif")
|
47 |
-
|
48 |
-
with row1_col2:
|
49 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/goes.gif")
|
50 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/fire.gif")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
File without changes
|
@@ -1 +0,0 @@
|
|
1 |
-
web: sh setup.sh && streamlit run Home.py
|
|
|
|
@@ -1 +1,62 @@
|
|
1 |
-
# Flood
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Flood mapping tool
|
2 |
+
|
3 |
+
[](https://github.com/mapaction/flood-mapping-tool/blob/main/LICENSE)
|
4 |
+
[](https://github.com/psf/black)
|
5 |
+
[](https://pycqa.github.io/isort/)
|
6 |
+
|
7 |
+
This repository contains a Streamlit app that allows to estimate flood extent using Sentinel-1 synthetic-aperture radar <a href='https://sentinel.esa.int/web/sentinel/user-guidessentinel-1-sar'>SAR</a> data.
|
8 |
+
|
9 |
+
The methodology is based on a <a href='https://un-spider.org/advisory-support/recommended-practices/recommended-\practice-google-earth-engine-flood-mapping'> recommended practice </a> published by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER) and it uses several satellite imagery datasets to produce the final output. The datasets are retrieved from <a href='https://earthengine.google.com/'>Google Earth Engine</a> which is a powerful web-platform for cloud-based processing of remote sensing data on large scales. More information on the methodology is given in the <i>Description</i> page in the Streamlit app.
|
10 |
+
|
11 |
+
This analysis provides a comprehensive overview of a flooding event, across different areas of interest, from settlements to countries. However, as mentioned in the UN-SPIDER website, the methodology is meant for broad information provision in a global context, and contains inherent uncertainties. Therefore, it is important that the tool is not used as the only source of information for rescue response planning.
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
|
15 |
+
#### Requirements
|
16 |
+
|
17 |
+
The Python version currently used is 3.10. Please install all packages from
|
18 |
+
``requirements.txt``:
|
19 |
+
|
20 |
+
```shell
|
21 |
+
pip install -r requirements.txt
|
22 |
+
```
|
23 |
+
|
24 |
+
#### Google Earth Engine authentication
|
25 |
+
|
26 |
+
[Sign up](https://signup.earthengine.google.com/) for a Google Earth Engine account, if you don't already have one. Open a terminal window, type `python` and then paste the following code:
|
27 |
+
|
28 |
+
```python
|
29 |
+
import ee
|
30 |
+
ee.Authenticate()
|
31 |
+
```
|
32 |
+
|
33 |
+
Log in to your Google account to obtain the authorization code and paste it back into the terminal. Once you press "Enter", an authorization token will be saved to your computer under the following file path (depending on your operating system):
|
34 |
+
|
35 |
+
- Windows: `C:\\Users\\USERNAME\\.config\\earthengine\\credentials`
|
36 |
+
- Linux: `/home/USERNAME/.config/earthengine/credentials`
|
37 |
+
- MacOS: `/Users/USERNAME/.config/earthengine/credentials`
|
38 |
+
|
39 |
+
The credentials will be used when initialising Google Earth Engine in the app.
|
40 |
+
|
41 |
+
#### Run the app
|
42 |
+
|
43 |
+
Finally, open a terminal and run
|
44 |
+
|
45 |
+
```shell
|
46 |
+
streamlit run app/Home.py
|
47 |
+
```
|
48 |
+
|
49 |
+
A new browser window will open and you can start using the tool.
|
50 |
+
|
51 |
+
## Contributing
|
52 |
+
|
53 |
+
#### Pre-commit
|
54 |
+
|
55 |
+
All code is formatted according to
|
56 |
+
[black](https://github.com/psf/black) and [flake8](https://flake8.pycqa.org/en/latest) guidelines. The repo is set-up to use [pre-commit](https://github.com/pre-commit/pre-commit). Please run ``pre-commit install`` the first time you are editing. Thereafter all commits will be checked against black and flake8 guidelines.
|
57 |
+
|
58 |
+
To check if your changes pass pre-commit without committing, run:
|
59 |
+
|
60 |
+
```shell
|
61 |
+
pre-commit run --all-files
|
62 |
+
```
|
@@ -1,19 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from multiapp import MultiApp
|
3 |
-
from apps import (
|
4 |
-
timelapse,
|
5 |
-
gee_datasets,
|
6 |
-
)
|
7 |
-
|
8 |
-
st.set_page_config(layout="wide")
|
9 |
-
|
10 |
-
|
11 |
-
apps = MultiApp()
|
12 |
-
|
13 |
-
# Add all your application here
|
14 |
-
|
15 |
-
apps.add_app("Create Timelapse", timelapse.app)
|
16 |
-
apps.add_app("Awesome GEE Community Datasets", gee_datasets.app)
|
17 |
-
|
18 |
-
# The main app
|
19 |
-
apps.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,50 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
# import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.title("About")
|
7 |
-
st.sidebar.info(
|
8 |
-
"""
|
9 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
10 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
11 |
-
"""
|
12 |
-
)
|
13 |
-
|
14 |
-
st.sidebar.title("Contact")
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
Qiusheng Wu: <https://wetlands.io>
|
18 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.title("Streamlit for Geospatial Applications")
|
23 |
-
|
24 |
-
st.markdown(
|
25 |
-
"""
|
26 |
-
This multi-page web app demonstrates various interactive web apps created using [streamlit](https://streamlit.io) and open-source mapping libraries,
|
27 |
-
such as [leafmap](https://leafmap.org), [geemap](https://geemap.org), [pydeck](https://deckgl.readthedocs.io), and [kepler.gl](https://docs.kepler.gl/docs/keplergl-jupyter).
|
28 |
-
This is an open-source project and you are very welcome to contribute your comments, questions, resources, and apps as [issues](https://github.com/giswqs/streamlit-geospatial/issues) or
|
29 |
-
[pull requests](https://github.com/giswqs/streamlit-geospatial/pulls) to the [GitHub repository](https://github.com/giswqs/streamlit-geospatial).
|
30 |
-
|
31 |
-
"""
|
32 |
-
)
|
33 |
-
|
34 |
-
st.info("Click on the left sidebar menu to navigate to the different apps.")
|
35 |
-
|
36 |
-
st.subheader("Timelapse of Satellite Imagery")
|
37 |
-
st.markdown(
|
38 |
-
"""
|
39 |
-
The following timelapse animations were created using the Timelapse web app. Click `Timelapse` on the left sidebar menu to create your own timelapse for any location around the globe.
|
40 |
-
"""
|
41 |
-
)
|
42 |
-
|
43 |
-
row1_col1, row1_col2 = st.columns(2)
|
44 |
-
with row1_col1:
|
45 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/spain.gif")
|
46 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/las_vegas.gif")
|
47 |
-
|
48 |
-
with row1_col2:
|
49 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/goes.gif")
|
50 |
-
st.image("https://github.com/giswqs/data/raw/main/timelapse/fire.gif")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Home page for Streamlit app."""
|
2 |
+
import streamlit as st
|
3 |
+
from src.config_parameters import config
|
4 |
+
from src.utils_sidebar import add_about, add_logo
|
5 |
+
|
6 |
+
# Page configuration
|
7 |
+
st.set_page_config(layout="wide")
|
8 |
+
|
9 |
+
# Create sidebar
|
10 |
+
add_logo("app/img/MA-logo.png")
|
11 |
+
add_about()
|
12 |
+
|
13 |
+
# Set fontisize text
|
14 |
+
st.markdown(
|
15 |
+
"""
|
16 |
+
<style> p { font-size: %s; } </style>
|
17 |
+
"""
|
18 |
+
% config["docs_fontsize"],
|
19 |
+
unsafe_allow_html=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
# Page title
|
23 |
+
st.markdown("# Home")
|
24 |
+
|
25 |
+
# First section
|
26 |
+
st.markdown("## Introduction")
|
27 |
+
st.markdown(
|
28 |
+
"""
|
29 |
+
This tool allows to estimate flood extent using Sentinel-1
|
30 |
+
synthetic-aperture radar
|
31 |
+
<a href='%s'>SAR</a> data.<br><br>
|
32 |
+
The methodology is based on a <a href=
|
33 |
+
'%s'>recommended practice</a>
|
34 |
+
published by the United Nations Platform for Space-based Information for
|
35 |
+
Disaster Management and Emergency Response (UN-SPIDER) and it uses several
|
36 |
+
satellite imagery datasets to produce the final output. The datasets are
|
37 |
+
retrieved from <a href='%s'>Google Earth
|
38 |
+
Engine</a> which is a powerful web-platform for cloud-based processing of
|
39 |
+
remote sensing data on large scales. More information on the methodology is
|
40 |
+
given in the Description.<br><br>
|
41 |
+
This analysis provides a comprehensive overview of a flooding event, across
|
42 |
+
different areas of interest, from settlements to countries. However, as
|
43 |
+
mentioned in the UN-SPIDER website, the methodology is meant for broad
|
44 |
+
information provision in a global context, and contains inherent
|
45 |
+
uncertainties. Therefore, it is important that the tool is not used as the
|
46 |
+
only source of information for rescue response planning.
|
47 |
+
"""
|
48 |
+
% (
|
49 |
+
config["url_sentinel_esa"],
|
50 |
+
config["url_unspider_tutorial"],
|
51 |
+
config["url_gee"],
|
52 |
+
),
|
53 |
+
unsafe_allow_html=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
# Second section
|
57 |
+
st.markdown("## How to use the tool")
|
58 |
+
st.markdown(
|
59 |
+
"""
|
60 |
+
<ul>
|
61 |
+
<li><p>
|
62 |
+
In the sidebar, choose <i>Flood extent analysis</i> to start the
|
63 |
+
analysis.
|
64 |
+
</p>
|
65 |
+
<li><p>
|
66 |
+
In the left panel, use the drawing tool to select an area of
|
67 |
+
interest on the map. You can delete your selection by clicking on
|
68 |
+
the bin icon. While the flood mapping is generated regardless of
|
69 |
+
the size of the selected region, you will be able to save raster
|
70 |
+
and vector flooding extent only if the side of the rectangular
|
71 |
+
selection does not exceed 100 km.
|
72 |
+
</p>
|
73 |
+
<li><p>
|
74 |
+
In the right panel click on the title <i>Choose Image Dates</i>
|
75 |
+
in order to expand the section. Here you need to select four dates.
|
76 |
+
The first two identify a range of dates based on which the
|
77 |
+
reference imagery (before the flooding event) is defined. You can
|
78 |
+
select even years worth of data (the reference imagery is
|
79 |
+
calculated as the median between the range of observations), but
|
80 |
+
make sure you take into account wet and dry seasons if only taking
|
81 |
+
a few months. The last two refer to a period of time which comes
|
82 |
+
after the flooding event. By setting periods, not single dates, you
|
83 |
+
allow the selection of enough tiles to cover the area of interest.
|
84 |
+
Sentinel-1 imagery is acquired minimum every 12 days for each point
|
85 |
+
on the globe (see Figure 2 in the documentation).
|
86 |
+
</p>
|
87 |
+
<li>
|
88 |
+
<p>
|
89 |
+
By clicking on <i>Choose parameters</i>, you will be able to
|
90 |
+
set two variables:
|
91 |
+
</p>
|
92 |
+
<ul>
|
93 |
+
<li><p>
|
94 |
+
The <i>threshold</i> is the value against which the
|
95 |
+
difference the two satellite images - before and after the
|
96 |
+
flooding event - is tested. Lower thresholds result in a
|
97 |
+
greater area considered "flooded". It is recommended to set
|
98 |
+
the value to 1.25, which was selected through trial and
|
99 |
+
error. You may want to adjust the value in case of high
|
100 |
+
rates of false positive or negative values, especially in
|
101 |
+
case other sources of information are available and it is
|
102 |
+
possible to compare flood extent estimations between
|
103 |
+
sources.
|
104 |
+
</p>
|
105 |
+
<li><p>
|
106 |
+
The <i>pass direction</i> has to do with the way the
|
107 |
+
satellite travels around the Earth. Depending on your area
|
108 |
+
of interest and time period, you may find more imagery
|
109 |
+
available for either the <i>Ascending</i> or the
|
110 |
+
<i>Descending</i> pass directions (see Figure 2 in the
|
111 |
+
Documentation). It is recommended to leave the parameter
|
112 |
+
unchanged for a first estimation and change its value in
|
113 |
+
case partial or no imagery is produced.
|
114 |
+
</p>
|
115 |
+
</ul>
|
116 |
+
<li><p>
|
117 |
+
Once the parameters are set, you can finally click on <i>Compute
|
118 |
+
flood extent</i> to run the calculations. A map will appear
|
119 |
+
underneath, with a layer containing the flooded area within the
|
120 |
+
area of interest.
|
121 |
+
</p>
|
122 |
+
<li><p>
|
123 |
+
If you wish to export the layer to file, you can click on <i>Export
|
124 |
+
to file</i> and download the raster and/or vector data.
|
125 |
+
</p>
|
126 |
+
</ul>
|
127 |
+
<p>
|
128 |
+
In case you get errors, follow the intructions. If you have doubts,
|
129 |
+
feel free to contact the Data Science team.
|
130 |
+
</p>
|
131 |
+
""",
|
132 |
+
unsafe_allow_html=True,
|
133 |
+
)
|
![]() |
![]() |
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Flood extent analysis page for Streamlit app."""
|
2 |
+
import datetime as dt
|
3 |
+
|
4 |
+
import ee
|
5 |
+
import folium
|
6 |
+
import geemap.foliumap as geemap
|
7 |
+
import requests
|
8 |
+
import streamlit as st
|
9 |
+
import streamlit_ext as ste
|
10 |
+
from folium.plugins import Draw, Geocoder, MiniMap
|
11 |
+
from src.config_parameters import config
|
12 |
+
from src.utils_flood_analysis import derive_flood_extents
|
13 |
+
from src.utils_sidebar import add_about, add_logo
|
14 |
+
from streamlit_folium import st_folium
|
15 |
+
|
16 |
+
# Page configuration
|
17 |
+
st.set_page_config(layout="wide")
|
18 |
+
|
19 |
+
# Create sidebar
|
20 |
+
add_logo("app/img/MA-logo.png")
|
21 |
+
add_about()
|
22 |
+
|
23 |
+
# Page title
|
24 |
+
st.markdown("# Flood extent analysis")
|
25 |
+
|
26 |
+
# Set styles for text fontsize and buttons
|
27 |
+
st.markdown(
|
28 |
+
"""
|
29 |
+
<style>
|
30 |
+
.streamlit-expanderHeader {
|
31 |
+
font-size: %s;
|
32 |
+
color: #000053;
|
33 |
+
}
|
34 |
+
.stDateInput > label {
|
35 |
+
font-size: %s;
|
36 |
+
}
|
37 |
+
.stSlider > label {
|
38 |
+
font-size: %s;
|
39 |
+
}
|
40 |
+
.stRadio > label {
|
41 |
+
font-size: %s;
|
42 |
+
}
|
43 |
+
.stButton > button {
|
44 |
+
font-size: %s;
|
45 |
+
font-weight: %s;
|
46 |
+
background-color: %s;
|
47 |
+
}
|
48 |
+
</style>
|
49 |
+
"""
|
50 |
+
% (
|
51 |
+
config["expander_header_fontsize"],
|
52 |
+
config["widget_header_fontsize"],
|
53 |
+
config["widget_header_fontsize"],
|
54 |
+
config["widget_header_fontsize"],
|
55 |
+
config["button_text_fontsize"],
|
56 |
+
config["button_text_fontweight"],
|
57 |
+
config["button_background_color"],
|
58 |
+
),
|
59 |
+
unsafe_allow_html=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
# Initialise Google Earth Engine
|
64 |
+
@st.cache
|
65 |
+
def _initialize_ee():
|
66 |
+
ee.Initialize()
|
67 |
+
|
68 |
+
|
69 |
+
_initialize_ee()
|
70 |
+
|
71 |
+
|
72 |
+
# Create app
|
73 |
+
def app():
|
74 |
+
"""Create Streamlit app."""
|
75 |
+
# Output_created is useful to decide whether the bottom panel with the
|
76 |
+
# output map should be visualised or not
|
77 |
+
if "output_created" not in st.session_state:
|
78 |
+
st.session_state.output_created = False
|
79 |
+
|
80 |
+
# Function to be used to hide bottom panel (when setting parameters for a
|
81 |
+
# new analysis)
|
82 |
+
def callback():
|
83 |
+
st.session_state.output_created = False
|
84 |
+
|
85 |
+
# Create two rows: top and bottom panel
|
86 |
+
row1 = st.container()
|
87 |
+
row2 = st.container()
|
88 |
+
# Crate two columns in the top panel: input map and paramters
|
89 |
+
col1, col2 = row1.columns([2, 1])
|
90 |
+
with col1:
|
91 |
+
# Add collapsable container for input map
|
92 |
+
with st.expander("Input map", expanded=True):
|
93 |
+
# Create folium map
|
94 |
+
Map = folium.Map(
|
95 |
+
location=[52.205276, 0.119167],
|
96 |
+
zoom_start=3,
|
97 |
+
control_scale=True,
|
98 |
+
# crs='EPSG4326'
|
99 |
+
)
|
100 |
+
# Add drawing tools to map
|
101 |
+
Draw(
|
102 |
+
export=False,
|
103 |
+
draw_options={
|
104 |
+
"circle": False,
|
105 |
+
"polyline": False,
|
106 |
+
"polygon": False,
|
107 |
+
"circle": False,
|
108 |
+
"marker": False,
|
109 |
+
"circlemarker": False,
|
110 |
+
},
|
111 |
+
).add_to(Map)
|
112 |
+
# Add search bar with geocoder to map
|
113 |
+
Geocoder(add_marker=False).add_to(Map)
|
114 |
+
# Add minimap to map
|
115 |
+
MiniMap().add_to(Map)
|
116 |
+
# Add file uploader for GeoJSON to add polygons to map
|
117 |
+
# data = st.file_uploader(
|
118 |
+
# "Upload a GeoJSON file to use as an ROI.",
|
119 |
+
# type=["geojson", "kml", "zip"],
|
120 |
+
# )
|
121 |
+
# ss = st.empty()
|
122 |
+
# with ss:
|
123 |
+
# Export map to Streamlit
|
124 |
+
output = st_folium(Map, width=800, height=600)
|
125 |
+
# if data is not None:
|
126 |
+
# with ss:
|
127 |
+
# # gj = geojson.load(data)
|
128 |
+
# # coords = gj['features'][0]['geometry']['coordinates']
|
129 |
+
# st.write('Still to be implemented')
|
130 |
+
with col2:
|
131 |
+
# Add collapsable container for image dates
|
132 |
+
with st.expander("Choose Image Dates"):
|
133 |
+
# Callback is added, so that, every time a parameters is changed,
|
134 |
+
# the bottom panel containing the output map is hidden
|
135 |
+
before_start = st.date_input(
|
136 |
+
"Start date for reference imagery",
|
137 |
+
value=dt.date(year=2022, month=7, day=1),
|
138 |
+
help="It needs to be prior to the flooding event",
|
139 |
+
on_change=callback,
|
140 |
+
)
|
141 |
+
before_end = st.date_input(
|
142 |
+
"End date for reference imagery",
|
143 |
+
value=dt.date(year=2022, month=7, day=30),
|
144 |
+
help=(
|
145 |
+
"It needs to be prior to the flooding event, at least 15 "
|
146 |
+
"days subsequent to the date selected above"
|
147 |
+
),
|
148 |
+
on_change=callback,
|
149 |
+
)
|
150 |
+
after_start = st.date_input(
|
151 |
+
"Start date for flooding imagery",
|
152 |
+
value=dt.date(year=2022, month=9, day=1),
|
153 |
+
help="It needs to be subsequent to the flooding event",
|
154 |
+
on_change=callback,
|
155 |
+
)
|
156 |
+
after_end = st.date_input(
|
157 |
+
"End date for flooding imagery",
|
158 |
+
value=dt.date(year=2022, month=9, day=16),
|
159 |
+
help=(
|
160 |
+
"It needs to be subsequent to the flooding event and at "
|
161 |
+
"least 10 days to the date selected above"
|
162 |
+
),
|
163 |
+
on_change=callback,
|
164 |
+
)
|
165 |
+
# Add collapsable container for parameters
|
166 |
+
with st.expander("Choose Parameters"):
|
167 |
+
# Add slider for threshold
|
168 |
+
add_slider = st.slider(
|
169 |
+
label="Select a threshold",
|
170 |
+
min_value=0.0,
|
171 |
+
max_value=5.0,
|
172 |
+
value=1.25,
|
173 |
+
step=0.25,
|
174 |
+
help="Higher values might reduce overall noise",
|
175 |
+
on_change=callback,
|
176 |
+
)
|
177 |
+
# Add radio buttons for pass direction
|
178 |
+
pass_direction = st.radio(
|
179 |
+
"Set pass direction",
|
180 |
+
["Ascending", "Descending"],
|
181 |
+
on_change=callback,
|
182 |
+
)
|
183 |
+
# Button for computation
|
184 |
+
submitted = st.button("Compute flood extent")
|
185 |
+
# Introduce date validation
|
186 |
+
check_dates = before_start < before_end <= after_start < after_end
|
187 |
+
# Introduce drawing validation (a polygon needs to exist)
|
188 |
+
check_drawing = (
|
189 |
+
output["all_drawings"] != [] and output["all_drawings"] is not None
|
190 |
+
)
|
191 |
+
# What happens when button is clicked on?
|
192 |
+
if submitted:
|
193 |
+
with col2:
|
194 |
+
# Output error if dates are not valid
|
195 |
+
if not check_dates:
|
196 |
+
st.error("Make sure that the dates were inserted correctly")
|
197 |
+
# Output error if no polygons were drawn
|
198 |
+
elif not check_drawing:
|
199 |
+
st.error("No region selected.")
|
200 |
+
else:
|
201 |
+
# Add output for computation
|
202 |
+
with st.spinner("Computing... Please wait..."):
|
203 |
+
# Extract coordinates from drawn polygon
|
204 |
+
coords = output["all_drawings"][-1]["geometry"][
|
205 |
+
"coordinates"
|
206 |
+
][0]
|
207 |
+
# Create geometry from coordinates
|
208 |
+
ee_geom_region = ee.Geometry.Polygon(coords)
|
209 |
+
# Crate flood raster and vector
|
210 |
+
(
|
211 |
+
detected_flood_vector,
|
212 |
+
detected_flood_raster,
|
213 |
+
_,
|
214 |
+
_,
|
215 |
+
) = derive_flood_extents(
|
216 |
+
aoi=ee_geom_region,
|
217 |
+
before_start_date=str(before_start),
|
218 |
+
before_end_date=str(before_end),
|
219 |
+
after_start_date=str(after_start),
|
220 |
+
after_end_date=str(after_end),
|
221 |
+
difference_threshold=add_slider,
|
222 |
+
polarization="VH",
|
223 |
+
pass_direction=pass_direction,
|
224 |
+
export=False,
|
225 |
+
)
|
226 |
+
# Create output map
|
227 |
+
Map2 = geemap.Map(
|
228 |
+
# basemap="HYBRID",
|
229 |
+
plugin_Draw=False,
|
230 |
+
Draw_export=False,
|
231 |
+
locate_control=False,
|
232 |
+
plugin_LatLngPopup=False,
|
233 |
+
)
|
234 |
+
try:
|
235 |
+
# Add flood vector layer to map
|
236 |
+
Map2.add_layer(
|
237 |
+
ee_object=detected_flood_vector,
|
238 |
+
name="Flood extent vector",
|
239 |
+
)
|
240 |
+
# Center map on flood raster
|
241 |
+
Map2.centerObject(detected_flood_raster)
|
242 |
+
except ee.EEException:
|
243 |
+
# If error contains the sentence below, it means that
|
244 |
+
# an image could not be properly generated
|
245 |
+
st.error(
|
246 |
+
"""
|
247 |
+
No satellite image found for the selected
|
248 |
+
dates.\n\n
|
249 |
+
Try changing the pass direction or the
|
250 |
+
polarization.\n\n
|
251 |
+
If this does not work, choose different
|
252 |
+
dates: it is likely that the satellite did not
|
253 |
+
cover the area of interest in the range of
|
254 |
+
dates specified (either before or after the
|
255 |
+
flooding event).
|
256 |
+
"""
|
257 |
+
)
|
258 |
+
else:
|
259 |
+
# If computation was succesfull, save outputs for
|
260 |
+
# output map
|
261 |
+
st.success("Computation complete")
|
262 |
+
st.session_state.output_created = True
|
263 |
+
st.session_state.Map2 = Map2
|
264 |
+
st.session_state.detected_flood_raster = (
|
265 |
+
detected_flood_raster
|
266 |
+
)
|
267 |
+
st.session_state.detected_flood_vector = (
|
268 |
+
detected_flood_vector
|
269 |
+
)
|
270 |
+
st.session_state.ee_geom_region = ee_geom_region
|
271 |
+
# If computation was successful, create output map in bottom panel
|
272 |
+
if st.session_state.output_created:
|
273 |
+
with row2:
|
274 |
+
# Add collapsable container for output map
|
275 |
+
with st.expander("Output map", expanded=True):
|
276 |
+
# Export Map2 to streamlit
|
277 |
+
st.session_state.Map2.to_streamlit()
|
278 |
+
# Create button to export to file
|
279 |
+
submitted2 = st.button("Export to file")
|
280 |
+
# What happens if button is clicked on?
|
281 |
+
if submitted2:
|
282 |
+
# Add output for computation
|
283 |
+
with st.spinner("Computing... Please wait..."):
|
284 |
+
try:
|
285 |
+
# Get download url for raster data
|
286 |
+
raster = st.session_state.detected_flood_raster
|
287 |
+
url_r = raster.getDownloadUrl(
|
288 |
+
{
|
289 |
+
"region": st.session_state.ee_geom_region,
|
290 |
+
"scale": 30,
|
291 |
+
"format": "GEO_TIFF",
|
292 |
+
}
|
293 |
+
)
|
294 |
+
except Exception:
|
295 |
+
st.error(
|
296 |
+
"""
|
297 |
+
The image size is too big for the image to
|
298 |
+
be exported to file. Select a smaller area
|
299 |
+
of interest (side <~ 150km) and repeat the
|
300 |
+
analysis.
|
301 |
+
"""
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
response_r = requests.get(url_r)
|
305 |
+
# Get download url for raster data
|
306 |
+
vector = st.session_state.detected_flood_vector
|
307 |
+
url_v = vector.getDownloadUrl("GEOJSON")
|
308 |
+
response_v = requests.get(url_v)
|
309 |
+
with row2:
|
310 |
+
# Create download buttons for raster and vector
|
311 |
+
# data
|
312 |
+
with open("flood_extent.tif", "wb"):
|
313 |
+
ste.download_button(
|
314 |
+
label="Download Raster Extent",
|
315 |
+
data=response_r.content,
|
316 |
+
file_name="flood_extent_raster.tif",
|
317 |
+
mime="image/tif",
|
318 |
+
)
|
319 |
+
with open("flood_extent.geojson", "wb"):
|
320 |
+
ste.download_button(
|
321 |
+
label="Download Vector Extent",
|
322 |
+
data=response_v.content,
|
323 |
+
file_name="flood_extent_vec.geojson",
|
324 |
+
mime="text/json",
|
325 |
+
)
|
326 |
+
# Output for computation complete
|
327 |
+
st.success("Computation complete")
|
328 |
+
|
329 |
+
|
330 |
+
# Run app
|
331 |
+
app()
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Documentation page for Streamlit app."""
|
2 |
+
import streamlit as st
|
3 |
+
from PIL import Image
|
4 |
+
from src.config_parameters import config
|
5 |
+
from src.utils_sidebar import add_about, add_logo
|
6 |
+
|
7 |
+
# Page configuration
|
8 |
+
st.set_page_config(layout="wide")
|
9 |
+
|
10 |
+
# Create sidebar
|
11 |
+
add_logo("app/img/MA-logo.png")
|
12 |
+
add_about()
|
13 |
+
|
14 |
+
# Set fontisize text
|
15 |
+
st.markdown(
|
16 |
+
"""
|
17 |
+
<style> p { font-size: %s; } </style>
|
18 |
+
"""
|
19 |
+
% config["docs_fontsize"],
|
20 |
+
unsafe_allow_html=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
# Page title
|
24 |
+
st.markdown("# Documentation")
|
25 |
+
|
26 |
+
# First section
|
27 |
+
st.markdown("## Methodology")
|
28 |
+
st.markdown(
|
29 |
+
"""
|
30 |
+
The methodology is based on the workflow depicted in Figure 1. In
|
31 |
+
addition to Sentinel-1 synthetic-aperture radar <a href='%s'>SAR</a> data,
|
32 |
+
two other datasets are used through <a href='%s'>Google Earth Engine</a>:
|
33 |
+
<ul>
|
34 |
+
<li><p>
|
35 |
+
The <i>WWF HydroSHEDS Void-Filled DEM, 3 Arc-Seconds</i>
|
36 |
+
<a href='%s'>dataset</a> is based on elevation data
|
37 |
+
obtained in 2000 by NASA's Shuttle Radar Topography Mission (SRTM),
|
38 |
+
and it is used to mask out areas with more than 5 percent slope
|
39 |
+
(see following section on limitations).
|
40 |
+
</p>
|
41 |
+
<li><p>
|
42 |
+
The <i>JRC Global Surface Water Mapping Layers, v1.4</i>
|
43 |
+
<a href='%s'>dataset</a> contains maps of the
|
44 |
+
location and temporal distribution of surface water from 1984 to
|
45 |
+
2021, and it is used to mask areas with perennial water bodies,
|
46 |
+
such as rivers or lakes.
|
47 |
+
</p>
|
48 |
+
</ul>
|
49 |
+
"""
|
50 |
+
% (
|
51 |
+
config["url_sentinel_dataset"],
|
52 |
+
config["url_gee"],
|
53 |
+
config["url_elevation_dataset"],
|
54 |
+
config["url_surface_water_dataset"],
|
55 |
+
),
|
56 |
+
unsafe_allow_html=True,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Add image workflow
|
60 |
+
img = Image.open("app/img/workflow.png")
|
61 |
+
col1, mid, col2, last = st.columns([5, 3, 10, 10])
|
62 |
+
with col1:
|
63 |
+
st.image(img, width=350)
|
64 |
+
with col2:
|
65 |
+
# Trick to add caption at the bottom of the column, as Streamlit has not
|
66 |
+
# developed a functionality to allign text to bottom
|
67 |
+
space_before_caption = "<br>" * 27
|
68 |
+
st.markdown(
|
69 |
+
space_before_caption,
|
70 |
+
unsafe_allow_html=True,
|
71 |
+
)
|
72 |
+
st.markdown(
|
73 |
+
"""
|
74 |
+
<p style="font-size:%s;">
|
75 |
+
Figure 1. Workflow of the flood mapping methodology (<a href=
|
76 |
+
'%s'>source</a>).
|
77 |
+
</p>
|
78 |
+
"""
|
79 |
+
% (
|
80 |
+
config["docs_caption_fontsize"],
|
81 |
+
config["url_unspider_tutorial_detail"],
|
82 |
+
),
|
83 |
+
unsafe_allow_html=True,
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
# Second section
|
88 |
+
st.markdown("## Radar imagery for flood detection")
|
89 |
+
st.markdown(
|
90 |
+
"""
|
91 |
+
While there are multiple change detections techniques for radar imagery,
|
92 |
+
the one used by Sentinel-1 is one of the simplest. Active radar satellites
|
93 |
+
produce active radiation directed at the land, and images are formed as a
|
94 |
+
function of the time it takes for that radiation to reach back to the
|
95 |
+
satellite. Because of this, radar systems are side-looking (otherwise
|
96 |
+
radiation from multiple areas would reach back at the same time). To be
|
97 |
+
detected and imaged, radiation needs to be scattered back, but not all
|
98 |
+
surfaces are equally able to scatter back, and that ability is also
|
99 |
+
influenced by the radiation's wavelength (shorter wavelengths are better at
|
100 |
+
detecting smaller objects, while longer wavelengths allow penetration,
|
101 |
+
which is good for forest canopies for example, and biomass studies).
|
102 |
+
Sentinel-1 satellites are C-band (~ 6 cm).<br><br>
|
103 |
+
Water is characterised by a mirror-like reflection mechanism, meaning that
|
104 |
+
no or very little radiation is scattered back to the satellite, so pixels
|
105 |
+
on the image will appear very dark. This very simple change detection takes
|
106 |
+
a "before" image, and looks for drops in intensity, dark spots, in the
|
107 |
+
"after" image.<br><br>
|
108 |
+
Sentinel-1 data is the result of measurements from a constellation of two
|
109 |
+
satellites, assing over the same areas following the same orbit on average
|
110 |
+
every 6 days. On Google Earth Engine, the processing level is Ground Range
|
111 |
+
Detected (GRD), meaning that it has been detected, multi-looked and
|
112 |
+
projected to ground range using an Earth ellipsoid model. GRD products
|
113 |
+
report on intensity of radiation, but have lost the phase and amplitude
|
114 |
+
information which is needed for other applications (interferometry for
|
115 |
+
example). These satellites emits in different polarizations, and can
|
116 |
+
acquire both single horizonal or vertical, or dual polarizations. Flood
|
117 |
+
water is best detected by using VH (vertical transmit and horizontal
|
118 |
+
receive), although VV (vertical transmit and vertical receive) can be
|
119 |
+
effective to identify partially submerged features. This tool uses VH
|
120 |
+
polarization. Figure 2 shows an overview of the Sentinel-1 observation
|
121 |
+
plan, where pass directions and coverage frequencies are highlighted.
|
122 |
+
""",
|
123 |
+
unsafe_allow_html=True,
|
124 |
+
)
|
125 |
+
|
126 |
+
# Add image satellite overview
|
127 |
+
st.image(
|
128 |
+
"%s" % config["url_sentinel_img"],
|
129 |
+
width=1000,
|
130 |
+
)
|
131 |
+
st.markdown(
|
132 |
+
"""
|
133 |
+
<p style="font-size:%s;">
|
134 |
+
Figure 2. Overview of the Sentinel-1 observation plan (<a href=
|
135 |
+
'%s'>source</a>).
|
136 |
+
</p>
|
137 |
+
"""
|
138 |
+
% (config["docs_caption_fontsize"], config["url_sentinel_img_location"]),
|
139 |
+
unsafe_allow_html=True,
|
140 |
+
)
|
141 |
+
|
142 |
+
# Third section
|
143 |
+
st.markdown("## Key limtations")
|
144 |
+
st.markdown(
|
145 |
+
"""
|
146 |
+
Radar imagery is great for detecting floods, as it is good at picking up
|
147 |
+
water and it is not affected by the time of the day or clouds (at this
|
148 |
+
wavelength). But it has its limits, and performs actually quite bad if
|
149 |
+
having to detect water in mountainous regions, especially if with narrow
|
150 |
+
valleys, and in urban areas (urban canyons). The reasons are mainly around
|
151 |
+
the viewing angles, which can cause image distortions. This method may also
|
152 |
+
result in false positives for other land cover changes with smooth
|
153 |
+
surfaces, such as roads and sand. Rough surface texture caused by wind or
|
154 |
+
rainfall may also make it challenging for the radar imagery to identify
|
155 |
+
water bodies.
|
156 |
+
""",
|
157 |
+
unsafe_allow_html=True,
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
# Last section
|
162 |
+
st.markdown("## Useful links")
|
163 |
+
st.markdown(
|
164 |
+
"""
|
165 |
+
<a href='%s'>UN-SPIDER recommended practice</a><br>
|
166 |
+
<a href='%s'>Sentinel-1 satellite imagery user guide</a><br>
|
167 |
+
Relevant scientific publications:
|
168 |
+
<a href='%s'>1</a>, <a href='%s'>2</a><br>
|
169 |
+
"""
|
170 |
+
% (
|
171 |
+
config["url_unspider_tutorial"],
|
172 |
+
config["url_sentinel_esa"],
|
173 |
+
config["url_publication_1"],
|
174 |
+
config["url_publication_2"],
|
175 |
+
),
|
176 |
+
unsafe_allow_html=True,
|
177 |
+
)
|
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
"""Sources for Streamlit app."""
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Configuration file."""
|
2 |
+
config = {
|
3 |
+
# Sidebar
|
4 |
+
"MA_logo_width": "60%",
|
5 |
+
"MA_logo_background_position": "35% 10%",
|
6 |
+
"sidebar_header_fontsize": "30px",
|
7 |
+
"sidebar_header_fontweight": "30px",
|
8 |
+
"about_box_background_color": "#dae7f4",
|
9 |
+
# Introduction and Documentation
|
10 |
+
"docs_fontsize": "1.2rem",
|
11 |
+
"docs_caption_fontsize": "1rem",
|
12 |
+
# Tool
|
13 |
+
"expander_header_fontsize": "23px",
|
14 |
+
"widget_header_fontsize": "18px",
|
15 |
+
"button_text_fontsize": "24px",
|
16 |
+
"button_text_fontweight": "bold",
|
17 |
+
"button_background_color": "#dae7f4",
|
18 |
+
# Data scientists involved
|
19 |
+
"data_scientists": {
|
20 |
+
"Piet": "[email protected]",
|
21 |
+
"Daniele": "[email protected]",
|
22 |
+
"Cate": "[email protected]",
|
23 |
+
},
|
24 |
+
# Urls
|
25 |
+
"url_data_science_wiki": (
|
26 |
+
"https://mapaction.atlassian.net/wiki/spaces/GAFO/overview"
|
27 |
+
),
|
28 |
+
"url_gee": "https://earthengine.google.com/",
|
29 |
+
"url_project_wiki": (
|
30 |
+
"https://mapaction.atlassian.net/wiki/spaces/GAFO/pages/15920922751/"
|
31 |
+
"Rapid+flood+mapping+from+satellite+imagery"
|
32 |
+
),
|
33 |
+
"url_github_repo": "https://github.com/mapaction/flood-extent-tool",
|
34 |
+
"url_sentinel_esa": (
|
35 |
+
"https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar"
|
36 |
+
),
|
37 |
+
"url_sentinel_dataset": (
|
38 |
+
"https://developers.google.com/earth-engine/datasets/catalog/"
|
39 |
+
"COPERNICUS_S1_GRD"
|
40 |
+
),
|
41 |
+
"url_sentinel_img": (
|
42 |
+
"https://sentinel.esa.int/documents/247904/4748961/Sentinel-1-Repeat-"
|
43 |
+
"Coverage-Frequency-Geometry-2021.jpg"
|
44 |
+
),
|
45 |
+
"url_sentinel_img_location": (
|
46 |
+
"https://sentinel.esa.int/web/sentinel/missions/sentinel-1/"
|
47 |
+
"observation-scenario"
|
48 |
+
),
|
49 |
+
"url_unspider_tutorial": (
|
50 |
+
"https://un-spider.org/advisory-support/recommended-practices/"
|
51 |
+
"recommended-practice-google-earth-engine-flood-mapping"
|
52 |
+
),
|
53 |
+
"url_unspider_tutorial_detail": (
|
54 |
+
"https://un-spider.org/advisory-support/recommended-practices/"
|
55 |
+
"recommended-practice-google-earth-engine-flood-mapping/in-detail"
|
56 |
+
),
|
57 |
+
"url_elevation_dataset": (
|
58 |
+
"https://developers.google.com/earth-engine/datasets/catalog/"
|
59 |
+
"WWF_HydroSHEDS_03VFDEM"
|
60 |
+
),
|
61 |
+
"url_surface_water_dataset": (
|
62 |
+
"https://developers.google.com/earth-engine/datasets/catalog/"
|
63 |
+
"JRC_GSW1_4_GlobalSurfaceWater"
|
64 |
+
),
|
65 |
+
"url_publication_1": (
|
66 |
+
"https://onlinelibrary.wiley.com/doi/full/10.1111/jfr3.12303"
|
67 |
+
),
|
68 |
+
"url_publication_2": (
|
69 |
+
"https://www.sciencedirect.com/science/article/abs/pii/"
|
70 |
+
"S0924271620301702"
|
71 |
+
),
|
72 |
+
}
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions to derive flood extent using Google Earth Engine."""
|
2 |
+
import time
|
3 |
+
|
4 |
+
import ee
|
5 |
+
|
6 |
+
|
7 |
+
def _check_task_completed(task_id, verbose=False):
|
8 |
+
"""
|
9 |
+
Return True if a task export completes successfully, else returns false.
|
10 |
+
|
11 |
+
Inputs:
|
12 |
+
task_id (str): Google Earth Engine task id
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
boolean
|
16 |
+
|
17 |
+
"""
|
18 |
+
status = ee.data.getTaskStatus(task_id)[0]
|
19 |
+
if status["state"] in (
|
20 |
+
ee.batch.Task.State.CANCELLED,
|
21 |
+
ee.batch.Task.State.FAILED,
|
22 |
+
):
|
23 |
+
if "error_message" in status:
|
24 |
+
if verbose:
|
25 |
+
print(status["error_message"])
|
26 |
+
return True
|
27 |
+
elif status["state"] == ee.batch.Task.State.COMPLETED:
|
28 |
+
return True
|
29 |
+
return False
|
30 |
+
|
31 |
+
|
32 |
+
def wait_for_tasks(task_ids, timeout=3600, verbose=False):
|
33 |
+
"""
|
34 |
+
Wait for tasks to complete, fail, or timeout.
|
35 |
+
|
36 |
+
Wait for all active tasks if task_ids is not provided.
|
37 |
+
Note: Tasks will not be canceled after timeout, and
|
38 |
+
may continue to run.
|
39 |
+
Inputs:
|
40 |
+
task_ids (list):
|
41 |
+
timeout (int):
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
None
|
45 |
+
"""
|
46 |
+
start = time.time()
|
47 |
+
elapsed = 0
|
48 |
+
while elapsed < timeout or timeout == 0:
|
49 |
+
elapsed = time.time() - start
|
50 |
+
finished = [_check_task_completed(task) for task in task_ids]
|
51 |
+
if all(finished):
|
52 |
+
if verbose:
|
53 |
+
print(f"Tasks {task_ids} completed after {elapsed}s")
|
54 |
+
return True
|
55 |
+
time.sleep(5)
|
56 |
+
if verbose:
|
57 |
+
print(
|
58 |
+
f"Stopped waiting for {len(task_ids)} tasks \
|
59 |
+
after {timeout} seconds"
|
60 |
+
)
|
61 |
+
return False
|
62 |
+
|
63 |
+
|
64 |
+
def export_flood_data(
|
65 |
+
flooded_area_vector,
|
66 |
+
flooded_area_raster,
|
67 |
+
image_before_flood,
|
68 |
+
image_after_flood,
|
69 |
+
region,
|
70 |
+
filename="flood_extents",
|
71 |
+
verbose=False,
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
Export the results of derive_flood_extents function to Google Drive.
|
75 |
+
|
76 |
+
Inputs:
|
77 |
+
flooded_area_vector (ee.FeatureCollection): Detected flood extents as
|
78 |
+
vector geometries.
|
79 |
+
flooded_area_raster (ee.Image): Detected flood extents as a binary
|
80 |
+
raster.
|
81 |
+
image_before_flood (ee.Image): The 'before' Sentinel-1 image.
|
82 |
+
image_after_flood (ee.Image): The 'after' Sentinel-1 image containing
|
83 |
+
view of the flood waters.
|
84 |
+
region (ee.Geometry.Polygon): Geographic extent of analysis area.
|
85 |
+
filename (str): Desired filename prefix for exported files
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
None
|
89 |
+
"""
|
90 |
+
if verbose:
|
91 |
+
print(
|
92 |
+
"Exporting detected flood extents to your Google Drive. \
|
93 |
+
Please wait..."
|
94 |
+
)
|
95 |
+
s1_before_task = ee.batch.Export.image.toDrive(
|
96 |
+
image=image_before_flood,
|
97 |
+
description="export_before_s1_scene",
|
98 |
+
scale=30,
|
99 |
+
region=region,
|
100 |
+
fileNamePrefix=filename + "_s1_before",
|
101 |
+
crs="EPSG:4326",
|
102 |
+
fileFormat="GeoTIFF",
|
103 |
+
)
|
104 |
+
|
105 |
+
s1_after_task = ee.batch.Export.image.toDrive(
|
106 |
+
image=image_after_flood,
|
107 |
+
description="export_flooded_s1_scene",
|
108 |
+
scale=30,
|
109 |
+
region=region,
|
110 |
+
fileNamePrefix=filename + "_s1_after",
|
111 |
+
crs="EPSG:4326",
|
112 |
+
fileFormat="GeoTIFF",
|
113 |
+
)
|
114 |
+
|
115 |
+
raster_task = ee.batch.Export.image.toDrive(
|
116 |
+
image=flooded_area_raster,
|
117 |
+
description="export_flood_extents_raster",
|
118 |
+
scale=30,
|
119 |
+
region=region,
|
120 |
+
fileNamePrefix=filename + "_raster",
|
121 |
+
crs="EPSG:4326",
|
122 |
+
fileFormat="GeoTIFF",
|
123 |
+
)
|
124 |
+
|
125 |
+
vector_task = ee.batch.Export.table.toDrive(
|
126 |
+
collection=flooded_area_vector,
|
127 |
+
description="export_flood_extents_polygons",
|
128 |
+
fileFormat="shp",
|
129 |
+
fileNamePrefix=filename + "_polygons",
|
130 |
+
)
|
131 |
+
|
132 |
+
s1_before_task.start()
|
133 |
+
s1_after_task.start()
|
134 |
+
raster_task.start()
|
135 |
+
vector_task.start()
|
136 |
+
|
137 |
+
if verbose:
|
138 |
+
print("Exporting before Sentinel-1 scene: Task id ", s1_before_task.id)
|
139 |
+
print("Exporting flooded Sentinel-1 scene: Task id ", s1_after_task.id)
|
140 |
+
print("Exporting flood extent geotiff: Task id ", raster_task.id)
|
141 |
+
print("Exporting flood extent shapefile: Task id ", vector_task.id)
|
142 |
+
|
143 |
+
wait_for_tasks(
|
144 |
+
[s1_before_task.id, s1_after_task.id, raster_task.id, vector_task.id]
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
def retrieve_image_collection(
|
149 |
+
search_region,
|
150 |
+
start_date,
|
151 |
+
end_date,
|
152 |
+
polarization="VH",
|
153 |
+
pass_direction="Ascending",
|
154 |
+
):
|
155 |
+
"""
|
156 |
+
Retrieve Sentinel-1 immage collection from Google Earth Engine.
|
157 |
+
|
158 |
+
Inputs:
|
159 |
+
search_region (ee.Geometry.Polygon): Geographic extent of image search.
|
160 |
+
start_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
|
161 |
+
end_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
|
162 |
+
polarization (str): Synthetic aperture radar polarization mode, e.g.,
|
163 |
+
'VH' or 'VV'. VH is mostly is the preferred polarization for
|
164 |
+
flood mapping.
|
165 |
+
pass_direction (str): Synthetic aperture radar pass direction, either
|
166 |
+
'Ascending' or 'Descending'.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
collection (ee.ImageCollection): Sentinel-1 images matching the search
|
170 |
+
criteria.
|
171 |
+
"""
|
172 |
+
collection = (
|
173 |
+
ee.ImageCollection("COPERNICUS/S1_GRD")
|
174 |
+
.filter(ee.Filter.eq("instrumentMode", "IW"))
|
175 |
+
.filter(
|
176 |
+
ee.Filter.listContains(
|
177 |
+
"transmitterReceiverPolarisation", polarization
|
178 |
+
)
|
179 |
+
)
|
180 |
+
.filter(ee.Filter.eq("orbitProperties_pass", pass_direction.upper()))
|
181 |
+
.filter(ee.Filter.eq("resolution_meters", 10))
|
182 |
+
.filterDate(start_date, end_date)
|
183 |
+
.filterBounds(search_region)
|
184 |
+
.select(polarization)
|
185 |
+
)
|
186 |
+
|
187 |
+
return collection
|
188 |
+
|
189 |
+
|
190 |
+
def smooth(image, smoothing_radius=50):
|
191 |
+
"""
|
192 |
+
Reduce the radar speckle by smoothing.
|
193 |
+
|
194 |
+
Inputs:
|
195 |
+
image (ee.Image): Input image.
|
196 |
+
smoothing_radius (int): The radius of the kernel to use for focal mean
|
197 |
+
smoothing.
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
smoothed_image (ee.Image): The resulting image after smoothing is
|
201 |
+
applied.
|
202 |
+
"""
|
203 |
+
smoothed_image = image.focal_mean(
|
204 |
+
radius=smoothing_radius, kernelType="circle", units="meters"
|
205 |
+
)
|
206 |
+
|
207 |
+
return smoothed_image
|
208 |
+
|
209 |
+
|
210 |
+
def mask_permanent_water(image):
|
211 |
+
"""
|
212 |
+
Query the JRC Global Surface Water Mapping Layers, v1.3.
|
213 |
+
|
214 |
+
The goal is to determine where perennial water bodies (water > 10
|
215 |
+
months/yr), and mask these areas.
|
216 |
+
Inputs:
|
217 |
+
image (ee.Image): Input image.
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
masked_image (ee.Image): The resulting image after surface water
|
221 |
+
masking is applied.
|
222 |
+
"""
|
223 |
+
surface_water = ee.Image("JRC/GSW1_4/GlobalSurfaceWater").select(
|
224 |
+
"seasonality"
|
225 |
+
)
|
226 |
+
surface_water_mask = surface_water.gte(10).updateMask(
|
227 |
+
surface_water.gte(10)
|
228 |
+
)
|
229 |
+
|
230 |
+
# Flooded layer where perennial water bodies(water > 10 mo / yr) is
|
231 |
+
# assigned a 0 value
|
232 |
+
where_surface_water = image.where(surface_water_mask, 0)
|
233 |
+
|
234 |
+
masked_image = image.updateMask(where_surface_water)
|
235 |
+
|
236 |
+
return masked_image
|
237 |
+
|
238 |
+
|
239 |
+
def reduce_noise(image):
|
240 |
+
"""
|
241 |
+
Reduce noise in the image.
|
242 |
+
|
243 |
+
Compute connectivity of pixels to eliminate those connected to 8 or fewer
|
244 |
+
neighbours.
|
245 |
+
Inputs:
|
246 |
+
image (ee.Image): A binary image.
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
reduced_noise_image (ee.Image): The resulting image after noise
|
250 |
+
reduction is applied.
|
251 |
+
"""
|
252 |
+
connections = image.connectedPixelCount()
|
253 |
+
reduced_noise_image = image.updateMask(connections.gte(8))
|
254 |
+
|
255 |
+
return reduced_noise_image
|
256 |
+
|
257 |
+
|
258 |
+
def mask_slopes(image):
|
259 |
+
"""
|
260 |
+
Mask out areas with more than 5 % slope with a Digital Elevation Model.
|
261 |
+
|
262 |
+
Inputs:
|
263 |
+
image (ee.Image): Input image.
|
264 |
+
Returns:
|
265 |
+
slopes_masked (ee.Image): The resulting image after slope masking is
|
266 |
+
applied.
|
267 |
+
"""
|
268 |
+
dem = ee.Image("WWF/HydroSHEDS/03VFDEM")
|
269 |
+
terrain = ee.Algorithms.Terrain(dem)
|
270 |
+
slope = terrain.select("slope")
|
271 |
+
slopes_masked = image.updateMask(slope.lt(5))
|
272 |
+
|
273 |
+
return slopes_masked
|
274 |
+
|
275 |
+
|
276 |
+
def derive_flood_extents(
|
277 |
+
aoi,
|
278 |
+
before_start_date,
|
279 |
+
before_end_date,
|
280 |
+
after_start_date,
|
281 |
+
after_end_date,
|
282 |
+
difference_threshold=1.25,
|
283 |
+
polarization="VH",
|
284 |
+
pass_direction="Ascending",
|
285 |
+
export=False,
|
286 |
+
export_filename="flood_extents",
|
287 |
+
):
|
288 |
+
"""
|
289 |
+
Set start and end dates of a period BEFORE and AFTER a flood.
|
290 |
+
|
291 |
+
These periods need to be long enough for Sentinel-1 to acquire an image.
|
292 |
+
|
293 |
+
Inputs:
|
294 |
+
aoi (ee.Geometry.Polygon): Geographic extent of analysis area.
|
295 |
+
before_start_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
|
296 |
+
before_end_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
|
297 |
+
after_start_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
|
298 |
+
after_end_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
|
299 |
+
difference_threshold (float): Threshold to be applied on the
|
300 |
+
differenced image (after flood - before flood). It has been chosen
|
301 |
+
by trial and error. In case your flood extent result shows many
|
302 |
+
false-positive or negative signals, consider changing it.
|
303 |
+
export (bool): Flag to export derived flood extents to Google Drive
|
304 |
+
export_filename (str): Desired filename prefix for exported files. Only
|
305 |
+
used if export=True.
|
306 |
+
|
307 |
+
Returns:
|
308 |
+
flood_vectors (ee.FeatureCollection): Detected flood extents as vector
|
309 |
+
geometries.
|
310 |
+
flood_rasters (ee.Image): Detected flood extents as a binary raster.
|
311 |
+
before_filtered (ee.Image): The 'before' Sentinel-1 image.
|
312 |
+
after_filtered (ee.Image): The 'after' Sentinel-1 image containing view
|
313 |
+
of the flood waters.
|
314 |
+
"""
|
315 |
+
before_flood_img_col = retrieve_image_collection(
|
316 |
+
search_region=aoi,
|
317 |
+
start_date=before_start_date,
|
318 |
+
end_date=before_end_date,
|
319 |
+
polarization=polarization,
|
320 |
+
pass_direction=pass_direction,
|
321 |
+
)
|
322 |
+
after_flood_img_col = retrieve_image_collection(
|
323 |
+
search_region=aoi,
|
324 |
+
start_date=after_start_date,
|
325 |
+
end_date=after_end_date,
|
326 |
+
polarization=polarization,
|
327 |
+
pass_direction=pass_direction,
|
328 |
+
)
|
329 |
+
|
330 |
+
# Create a mosaic of selected tiles and clip to study area
|
331 |
+
before_mosaic = before_flood_img_col.mosaic().clip(aoi)
|
332 |
+
after_mosaic = after_flood_img_col.mosaic().clip(aoi)
|
333 |
+
|
334 |
+
before_filtered = smooth(before_mosaic)
|
335 |
+
after_filtered = smooth(after_mosaic)
|
336 |
+
|
337 |
+
# Calculate the difference between the before and after images
|
338 |
+
difference = after_filtered.divide(before_filtered)
|
339 |
+
|
340 |
+
# Apply the predefined difference - threshold and create the flood extent
|
341 |
+
# mask
|
342 |
+
difference_binary = difference.gt(difference_threshold)
|
343 |
+
difference_binary_masked = mask_permanent_water(difference_binary)
|
344 |
+
difference_binary_masked_reduced_noise = reduce_noise(
|
345 |
+
difference_binary_masked
|
346 |
+
)
|
347 |
+
flood_rasters = mask_slopes(difference_binary_masked_reduced_noise)
|
348 |
+
|
349 |
+
# Export the extent of detected flood in vector format
|
350 |
+
flood_vectors = flood_rasters.reduceToVectors(
|
351 |
+
scale=10,
|
352 |
+
geometryType="polygon",
|
353 |
+
geometry=aoi,
|
354 |
+
eightConnected=False,
|
355 |
+
bestEffort=True,
|
356 |
+
tileScale=2,
|
357 |
+
)
|
358 |
+
|
359 |
+
if export:
|
360 |
+
export_flood_data(
|
361 |
+
flooded_area_vector=flood_vectors,
|
362 |
+
flooded_area_raster=flood_rasters,
|
363 |
+
image_before_flood=before_filtered,
|
364 |
+
image_after_flood=after_filtered,
|
365 |
+
region=aoi,
|
366 |
+
filename=export_filename,
|
367 |
+
)
|
368 |
+
|
369 |
+
return flood_vectors, flood_rasters, before_filtered, after_filtered
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for the sidebar of the Streamlit app."""
|
2 |
+
import base64
|
3 |
+
from datetime import date
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
from src.config_parameters import config
|
7 |
+
|
8 |
+
sidebar_title = "Flood Mapping Tool"
|
9 |
+
|
10 |
+
|
11 |
+
@st.cache(allow_output_mutation=True)
|
12 |
+
def get_base64_of_bin_file(png_file):
|
13 |
+
"""
|
14 |
+
Get base64 from image file.
|
15 |
+
|
16 |
+
Inputs:
|
17 |
+
png_file (str): image filename
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: encoded ASCII file
|
21 |
+
"""
|
22 |
+
with open(png_file, "rb") as f:
|
23 |
+
data = f.read()
|
24 |
+
return base64.b64encode(data).decode()
|
25 |
+
|
26 |
+
|
27 |
+
def build_markup_for_logo(
|
28 |
+
png_file,
|
29 |
+
background_position=f"{config['MA_logo_background_position']}",
|
30 |
+
image_width=f"{config['MA_logo_width']}",
|
31 |
+
image_height="",
|
32 |
+
sidebar_header_fontsize=config["sidebar_header_fontsize"],
|
33 |
+
sidebar_header_fontweight=config["sidebar_header_fontweight"],
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Create full string for navigation bar, including logo and title.
|
37 |
+
|
38 |
+
Inputs:
|
39 |
+
png_file (str): image filename
|
40 |
+
background_position (str): position logo
|
41 |
+
image_width (str): width logo
|
42 |
+
image_height (str): height logo
|
43 |
+
|
44 |
+
Returns
|
45 |
+
str: full string with logo and title for sidebar
|
46 |
+
"""
|
47 |
+
binary_string = get_base64_of_bin_file(png_file)
|
48 |
+
return """
|
49 |
+
<style>
|
50 |
+
[data-testid="stSidebarNav"] {
|
51 |
+
background-image: url("data:image/png;base64,%s");
|
52 |
+
background-repeat: no-repeat;
|
53 |
+
padding-top: 50px;
|
54 |
+
padding-bottom: 10px;
|
55 |
+
background-position: %s;
|
56 |
+
background-size: %s %s;
|
57 |
+
}
|
58 |
+
[data-testid="stSidebarNav"]::before {
|
59 |
+
content: %s;
|
60 |
+
margin-left: 20px;
|
61 |
+
margin-top: 20px;
|
62 |
+
margin-bottom: 20px;
|
63 |
+
padding-bottom: 50px;
|
64 |
+
font-size: %s;
|
65 |
+
font-weight: %s;
|
66 |
+
position: relative;
|
67 |
+
top: 85px;
|
68 |
+
}
|
69 |
+
</style>
|
70 |
+
""" % (
|
71 |
+
binary_string,
|
72 |
+
background_position,
|
73 |
+
image_width,
|
74 |
+
image_height,
|
75 |
+
sidebar_title,
|
76 |
+
sidebar_header_fontsize,
|
77 |
+
sidebar_header_fontweight,
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def add_logo(png_file):
|
82 |
+
"""
|
83 |
+
Add logo to sidebar.
|
84 |
+
|
85 |
+
Inputs:
|
86 |
+
png_file (str): image filename
|
87 |
+
Returns:
|
88 |
+
None
|
89 |
+
"""
|
90 |
+
logo_markup = build_markup_for_logo(png_file)
|
91 |
+
st.markdown(
|
92 |
+
logo_markup,
|
93 |
+
unsafe_allow_html=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def add_about():
|
98 |
+
"""
|
99 |
+
Add about and contacts to sidebar.
|
100 |
+
|
101 |
+
Inputs:
|
102 |
+
None
|
103 |
+
Returns:
|
104 |
+
None
|
105 |
+
"""
|
106 |
+
today = date.today().strftime("%B %d, %Y")
|
107 |
+
|
108 |
+
# About textbox
|
109 |
+
st.sidebar.markdown("## About")
|
110 |
+
st.sidebar.markdown(
|
111 |
+
"""
|
112 |
+
<div class='warning' style='
|
113 |
+
background-color: %s;
|
114 |
+
margin: 0px;
|
115 |
+
padding: 1em;'
|
116 |
+
'>
|
117 |
+
<p style='
|
118 |
+
margin-left:1em;
|
119 |
+
margin: 0px;
|
120 |
+
font-size: 1rem;
|
121 |
+
margin-bottom: 1em;
|
122 |
+
'>
|
123 |
+
Last update: %s
|
124 |
+
</p>
|
125 |
+
<p style='
|
126 |
+
margin-left:1em;
|
127 |
+
font-size: 1rem;
|
128 |
+
margin: 0px
|
129 |
+
'>
|
130 |
+
<a href='%s'>
|
131 |
+
Wiki reference page</a><br>
|
132 |
+
<a href='%s'>
|
133 |
+
GitHub repository</a><br>
|
134 |
+
<a href='%s'>
|
135 |
+
Data Science Lab</a>
|
136 |
+
</p>
|
137 |
+
</div>
|
138 |
+
"""
|
139 |
+
% (
|
140 |
+
config["about_box_background_color"],
|
141 |
+
today,
|
142 |
+
config["url_project_wiki"],
|
143 |
+
config["url_github_repo"],
|
144 |
+
config["url_data_science_wiki"],
|
145 |
+
),
|
146 |
+
unsafe_allow_html=True,
|
147 |
+
)
|
148 |
+
|
149 |
+
# Contacts textbox
|
150 |
+
st.sidebar.markdown(" ")
|
151 |
+
st.sidebar.markdown("## Contacts")
|
152 |
+
|
153 |
+
# Add data scientists and emails
|
154 |
+
contacts_text = ""
|
155 |
+
for ds, email in config["data_scientists"].items():
|
156 |
+
contacts_text += ds + (
|
157 |
+
"<span style='float:right; margin-right: 3px;'>"
|
158 |
+
"<a href='mailto:%s'>%s</a></span><br>" % (email, email)
|
159 |
+
)
|
160 |
+
|
161 |
+
# Add text box
|
162 |
+
st.sidebar.markdown(
|
163 |
+
"""
|
164 |
+
<div class='warning' style='
|
165 |
+
background-color: %s;
|
166 |
+
margin: 0px;
|
167 |
+
padding: 1em;'
|
168 |
+
'>
|
169 |
+
<p style='
|
170 |
+
margin-left:1em;
|
171 |
+
font-size: 1rem;
|
172 |
+
margin: 0px
|
173 |
+
'>
|
174 |
+
%s
|
175 |
+
</p>
|
176 |
+
</div>
|
177 |
+
"""
|
178 |
+
% (config["about_box_background_color"], contacts_text),
|
179 |
+
unsafe_allow_html=True,
|
180 |
+
)
|
@@ -1,186 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import streamlit as st
|
3 |
-
import geemap.foliumap as geemap
|
4 |
-
|
5 |
-
WIDTH = 1060
|
6 |
-
HEIGHT = 600
|
7 |
-
|
8 |
-
|
9 |
-
def function():
|
10 |
-
st.write("Not implemented yet.")
|
11 |
-
Map = geemap.Map()
|
12 |
-
Map.to_streamlit(WIDTH, HEIGHT)
|
13 |
-
|
14 |
-
|
15 |
-
def lulc_mrb_floodplain():
|
16 |
-
|
17 |
-
Map = geemap.Map()
|
18 |
-
|
19 |
-
State_boundaries = ee.FeatureCollection('users/giswqs/MRB/State_Boundaries')
|
20 |
-
State_style = State_boundaries.style(
|
21 |
-
**{'color': '808080', 'width': 1, 'fillColor': '00000000'}
|
22 |
-
)
|
23 |
-
|
24 |
-
MRB_boundary = ee.FeatureCollection('users/giswqs/MRB/MRB_Boundary')
|
25 |
-
MRB_style = MRB_boundary.style(
|
26 |
-
**{'color': '000000', 'width': 2, 'fillColor': '00000000'}
|
27 |
-
)
|
28 |
-
|
29 |
-
floodplain = ee.Image('users/giswqs/MRB/USGS_Floodplain')
|
30 |
-
|
31 |
-
class_values = [34, 38, 46, 50, 62]
|
32 |
-
class_palette = ['c500ff', '00ffc5', '00a9e6', '73004d', '004d73']
|
33 |
-
|
34 |
-
img_1950 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1950')
|
35 |
-
img_1950 = img_1950.set('b1_class_values', class_values)
|
36 |
-
img_1950 = img_1950.set('b1_class_palette', class_palette)
|
37 |
-
|
38 |
-
img_1960 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1960')
|
39 |
-
img_1960 = img_1960.set('b1_class_values', class_values)
|
40 |
-
img_1960 = img_1960.set('b1_class_palette', class_palette)
|
41 |
-
|
42 |
-
img_1970 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1970')
|
43 |
-
img_1970 = img_1970.set('b1_class_values', class_values)
|
44 |
-
img_1970 = img_1970.set('b1_class_palette', class_palette)
|
45 |
-
|
46 |
-
img_1980 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1980')
|
47 |
-
img_1980 = img_1980.set('b1_class_values', class_values)
|
48 |
-
img_1980 = img_1980.set('b1_class_palette', class_palette)
|
49 |
-
|
50 |
-
img_1990 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_1990')
|
51 |
-
img_1990 = img_1990.set('b1_class_values', class_values)
|
52 |
-
img_1990 = img_1990.set('b1_class_palette', class_palette)
|
53 |
-
|
54 |
-
img_2000 = ee.Image('users/giswqs/MRB/Major_Transitions_1941_2000')
|
55 |
-
img_2000 = img_2000.set('b1_class_values', class_values)
|
56 |
-
img_2000 = img_2000.set('b1_class_palette', class_palette)
|
57 |
-
|
58 |
-
Map.addLayer(floodplain, {'palette': ['cccccc']}, 'Floodplain', True, 0.5)
|
59 |
-
Map.addLayer(img_2000, {}, 'Major Transitions 1941-2000')
|
60 |
-
Map.addLayer(img_1990, {}, 'Major Transitions 1941-1990')
|
61 |
-
Map.addLayer(img_1980, {}, 'Major Transitions 1941-1980')
|
62 |
-
Map.addLayer(img_1970, {}, 'Major Transitions 1941-1970')
|
63 |
-
Map.addLayer(img_1960, {}, 'Major Transitions 1941-1960')
|
64 |
-
Map.addLayer(img_1950, {}, 'Major Transitions 1941-1950')
|
65 |
-
|
66 |
-
Map.addLayer(State_style, {}, 'State Boundaries')
|
67 |
-
Map.addLayer(MRB_style, {}, 'MRB Boundary')
|
68 |
-
|
69 |
-
Map.to_streamlit(WIDTH, HEIGHT)
|
70 |
-
|
71 |
-
|
72 |
-
def global_mangrove_watch():
|
73 |
-
"""https://samapriya.github.io/awesome-gee-community-datasets/projects/mangrove/"""
|
74 |
-
Map = geemap.Map()
|
75 |
-
gmw2007 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2007_v2")
|
76 |
-
gmw2008 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2008_v2")
|
77 |
-
gmw2009 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2009_v2")
|
78 |
-
gmw2010 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2010_v2")
|
79 |
-
gmw2015 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2015_v2")
|
80 |
-
gmw2016 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_2016_v2")
|
81 |
-
gmw1996 = ee.FeatureCollection("projects/sat-io/open-datasets/GMW/GMW_1996_v2")
|
82 |
-
|
83 |
-
Map.addLayer(
|
84 |
-
ee.Image().paint(gmw1996, 0, 3),
|
85 |
-
{"palette": ["228B22"]},
|
86 |
-
'Global Mangrove Watch 1996',
|
87 |
-
)
|
88 |
-
Map.addLayer(
|
89 |
-
ee.Image().paint(gmw2007, 0, 3),
|
90 |
-
{"palette": ["228B22"]},
|
91 |
-
'Global Mangrove Watch 2007',
|
92 |
-
)
|
93 |
-
Map.addLayer(
|
94 |
-
ee.Image().paint(gmw2008, 0, 3),
|
95 |
-
{"palette": ["228B22"]},
|
96 |
-
'Global Mangrove Watch 2008',
|
97 |
-
)
|
98 |
-
Map.addLayer(
|
99 |
-
ee.Image().paint(gmw2009, 0, 3),
|
100 |
-
{"palette": ["228B22"]},
|
101 |
-
'Global Mangrove Watch 2009',
|
102 |
-
)
|
103 |
-
Map.addLayer(
|
104 |
-
ee.Image().paint(gmw2010, 0, 3),
|
105 |
-
{"palette": ["228B22"]},
|
106 |
-
'Global Mangrove Watch 2010',
|
107 |
-
)
|
108 |
-
Map.addLayer(
|
109 |
-
ee.Image().paint(gmw2015, 0, 3),
|
110 |
-
{"palette": ["228B22"]},
|
111 |
-
'Global Mangrove Watch 2015',
|
112 |
-
)
|
113 |
-
Map.addLayer(
|
114 |
-
ee.Image().paint(gmw2016, 0, 3),
|
115 |
-
{"palette": ["228B22"]},
|
116 |
-
'Global Mangrove Watch 2015',
|
117 |
-
)
|
118 |
-
|
119 |
-
Map.to_streamlit(WIDTH, HEIGHT)
|
120 |
-
|
121 |
-
|
122 |
-
def app():
|
123 |
-
|
124 |
-
st.title("Awesome GEE Community Datasets")
|
125 |
-
|
126 |
-
st.markdown(
|
127 |
-
"""
|
128 |
-
|
129 |
-
This app is for exploring the [Awesome GEE Community Datasets](https://samapriya.github.io/awesome-gee-community-datasets). Work in progress.
|
130 |
-
|
131 |
-
"""
|
132 |
-
)
|
133 |
-
|
134 |
-
datasets = {
|
135 |
-
"Population & Socioeconomic": {
|
136 |
-
"High Resolution Settlement Layer": "function()",
|
137 |
-
"World Settlement Footprint (2015)": "function()",
|
138 |
-
"Gridded Population of the World": "function()",
|
139 |
-
"geoBoundaries Global Database": "function()",
|
140 |
-
"West Africa Coastal Vulnerability Mapping": "function()",
|
141 |
-
"Relative Wealth Index (RWI)": "function()",
|
142 |
-
"Social Connectedness Index (SCI)": "function()",
|
143 |
-
"Native Land (Indigenous Land Maps)": "function()",
|
144 |
-
},
|
145 |
-
"Geophysical, Biological & Biogeochemical": {
|
146 |
-
"Geomorpho90m Geomorphometric Layers": "function()",
|
147 |
-
},
|
148 |
-
"Land Use and Land Cover": {
|
149 |
-
"Global Mangrove Watch": "global_mangrove_watch()",
|
150 |
-
"Mississippi River Basin Floodplain Land Use Change (1941-2000)": "lulc_mrb_floodplain()",
|
151 |
-
},
|
152 |
-
"Hydrology": {
|
153 |
-
"Global Shoreline Dataset": "function()",
|
154 |
-
},
|
155 |
-
"Agriculture, Vegetation and Forestry": {
|
156 |
-
"Landfire Mosaics LF v2.0.0": "function()",
|
157 |
-
},
|
158 |
-
"Global Utilities, Assets and Amenities Layers": {
|
159 |
-
"Global Power": "function()",
|
160 |
-
},
|
161 |
-
"EarthEnv Biodiversity ecosystems & climate Layers": {
|
162 |
-
"Global Consensus Landcover": "function()",
|
163 |
-
},
|
164 |
-
"Weather and Climate Layers": {
|
165 |
-
"Global Reference Evapotranspiration Layers": "function()",
|
166 |
-
},
|
167 |
-
"Global Events Layers": {
|
168 |
-
"Global Fire Atlas (2003-2016)": "function()",
|
169 |
-
},
|
170 |
-
}
|
171 |
-
|
172 |
-
row1_col1, row1_col2, _ = st.columns([1.2, 1.8, 1])
|
173 |
-
|
174 |
-
with row1_col1:
|
175 |
-
category = st.selectbox("Select a category", datasets.keys(), index=2)
|
176 |
-
with row1_col2:
|
177 |
-
dataset = st.selectbox("Select a dataset", datasets[category].keys())
|
178 |
-
|
179 |
-
Map = geemap.Map()
|
180 |
-
|
181 |
-
if dataset:
|
182 |
-
eval(datasets[category][dataset])
|
183 |
-
|
184 |
-
else:
|
185 |
-
Map = geemap.Map()
|
186 |
-
Map.to_streamlit(WIDTH, HEIGHT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,174 +0,0 @@
|
|
1 |
-
""" A module for storing some sample ROIs for creating Landsat/GOES timelapse.
|
2 |
-
"""
|
3 |
-
|
4 |
-
from shapely.geometry import Polygon
|
5 |
-
|
6 |
-
goes_rois = {
|
7 |
-
"Creek Fire, CA (2020-09-05)": {
|
8 |
-
"region": Polygon(
|
9 |
-
[
|
10 |
-
[-121.003418, 36.848857],
|
11 |
-
[-121.003418, 39.049052],
|
12 |
-
[-117.905273, 39.049052],
|
13 |
-
[-117.905273, 36.848857],
|
14 |
-
[-121.003418, 36.848857],
|
15 |
-
]
|
16 |
-
),
|
17 |
-
"start_time": "2020-09-05T15:00:00",
|
18 |
-
"end_time": "2020-09-06T02:00:00",
|
19 |
-
},
|
20 |
-
"Bomb Cyclone (2021-10-24)": {
|
21 |
-
"region": Polygon(
|
22 |
-
[
|
23 |
-
[-159.5954, 60.4088],
|
24 |
-
[-159.5954, 24.5178],
|
25 |
-
[-114.2438, 24.5178],
|
26 |
-
[-114.2438, 60.4088],
|
27 |
-
]
|
28 |
-
),
|
29 |
-
"start_time": "2021-10-24T14:00:00",
|
30 |
-
"end_time": "2021-10-25T01:00:00",
|
31 |
-
},
|
32 |
-
"Hunga Tonga Volcanic Eruption (2022-01-15)": {
|
33 |
-
"region": Polygon(
|
34 |
-
[
|
35 |
-
[-192.480469, -32.546813],
|
36 |
-
[-192.480469, -8.754795],
|
37 |
-
[-157.587891, -8.754795],
|
38 |
-
[-157.587891, -32.546813],
|
39 |
-
[-192.480469, -32.546813],
|
40 |
-
]
|
41 |
-
),
|
42 |
-
"start_time": "2022-01-15T03:00:00",
|
43 |
-
"end_time": "2022-01-15T07:00:00",
|
44 |
-
},
|
45 |
-
"Hunga Tonga Volcanic Eruption Closer Look (2022-01-15)": {
|
46 |
-
"region": Polygon(
|
47 |
-
[
|
48 |
-
[-178.901367, -22.958393],
|
49 |
-
[-178.901367, -17.85329],
|
50 |
-
[-171.452637, -17.85329],
|
51 |
-
[-171.452637, -22.958393],
|
52 |
-
[-178.901367, -22.958393],
|
53 |
-
]
|
54 |
-
),
|
55 |
-
"start_time": "2022-01-15T03:00:00",
|
56 |
-
"end_time": "2022-01-15T07:00:00",
|
57 |
-
},
|
58 |
-
}
|
59 |
-
|
60 |
-
|
61 |
-
landsat_rois = {
|
62 |
-
"Aral Sea": Polygon(
|
63 |
-
[
|
64 |
-
[57.667236, 43.834527],
|
65 |
-
[57.667236, 45.996962],
|
66 |
-
[61.12793, 45.996962],
|
67 |
-
[61.12793, 43.834527],
|
68 |
-
[57.667236, 43.834527],
|
69 |
-
]
|
70 |
-
),
|
71 |
-
"Dubai": Polygon(
|
72 |
-
[
|
73 |
-
[54.541626, 24.763044],
|
74 |
-
[54.541626, 25.427152],
|
75 |
-
[55.632019, 25.427152],
|
76 |
-
[55.632019, 24.763044],
|
77 |
-
[54.541626, 24.763044],
|
78 |
-
]
|
79 |
-
),
|
80 |
-
"Hong Kong International Airport": Polygon(
|
81 |
-
[
|
82 |
-
[113.825226, 22.198849],
|
83 |
-
[113.825226, 22.349758],
|
84 |
-
[114.085121, 22.349758],
|
85 |
-
[114.085121, 22.198849],
|
86 |
-
[113.825226, 22.198849],
|
87 |
-
]
|
88 |
-
),
|
89 |
-
"Las Vegas, NV": Polygon(
|
90 |
-
[
|
91 |
-
[-115.554199, 35.804449],
|
92 |
-
[-115.554199, 36.558188],
|
93 |
-
[-113.903503, 36.558188],
|
94 |
-
[-113.903503, 35.804449],
|
95 |
-
[-115.554199, 35.804449],
|
96 |
-
]
|
97 |
-
),
|
98 |
-
"Pucallpa, Peru": Polygon(
|
99 |
-
[
|
100 |
-
[-74.672699, -8.600032],
|
101 |
-
[-74.672699, -8.254983],
|
102 |
-
[-74.279938, -8.254983],
|
103 |
-
[-74.279938, -8.600032],
|
104 |
-
]
|
105 |
-
),
|
106 |
-
"Sierra Gorda, Chile": Polygon(
|
107 |
-
[
|
108 |
-
[-69.315491, -22.837104],
|
109 |
-
[-69.315491, -22.751488],
|
110 |
-
[-69.190006, -22.751488],
|
111 |
-
[-69.190006, -22.837104],
|
112 |
-
[-69.315491, -22.837104],
|
113 |
-
]
|
114 |
-
),
|
115 |
-
}
|
116 |
-
|
117 |
-
modis_rois = {
|
118 |
-
"World": Polygon(
|
119 |
-
[
|
120 |
-
[-171.210938, -57.136239],
|
121 |
-
[-171.210938, 79.997168],
|
122 |
-
[177.539063, 79.997168],
|
123 |
-
[177.539063, -57.136239],
|
124 |
-
[-171.210938, -57.136239],
|
125 |
-
]
|
126 |
-
),
|
127 |
-
"Africa": Polygon(
|
128 |
-
[
|
129 |
-
[-18.6983, 38.1446],
|
130 |
-
[-18.6983, -36.1630],
|
131 |
-
[52.2293, -36.1630],
|
132 |
-
[52.2293, 38.1446],
|
133 |
-
]
|
134 |
-
),
|
135 |
-
"USA": Polygon(
|
136 |
-
[
|
137 |
-
[-127.177734, 23.725012],
|
138 |
-
[-127.177734, 50.792047],
|
139 |
-
[-66.269531, 50.792047],
|
140 |
-
[-66.269531, 23.725012],
|
141 |
-
[-127.177734, 23.725012],
|
142 |
-
]
|
143 |
-
),
|
144 |
-
}
|
145 |
-
|
146 |
-
ocean_rois = {
|
147 |
-
"Gulf of Mexico": Polygon(
|
148 |
-
[
|
149 |
-
[-101.206055, 15.496032],
|
150 |
-
[-101.206055, 32.361403],
|
151 |
-
[-75.673828, 32.361403],
|
152 |
-
[-75.673828, 15.496032],
|
153 |
-
[-101.206055, 15.496032],
|
154 |
-
]
|
155 |
-
),
|
156 |
-
"North Atlantic Ocean": Polygon(
|
157 |
-
[
|
158 |
-
[-85.341797, 24.046464],
|
159 |
-
[-85.341797, 45.02695],
|
160 |
-
[-55.810547, 45.02695],
|
161 |
-
[-55.810547, 24.046464],
|
162 |
-
[-85.341797, 24.046464],
|
163 |
-
]
|
164 |
-
),
|
165 |
-
"World": Polygon(
|
166 |
-
[
|
167 |
-
[-171.210938, -57.136239],
|
168 |
-
[-171.210938, 79.997168],
|
169 |
-
[177.539063, 79.997168],
|
170 |
-
[177.539063, -57.136239],
|
171 |
-
[-171.210938, -57.136239],
|
172 |
-
]
|
173 |
-
),
|
174 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,1313 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import os
|
3 |
-
import datetime
|
4 |
-
import geopandas as gpd
|
5 |
-
import folium
|
6 |
-
import streamlit as st
|
7 |
-
import geemap.colormaps as cm
|
8 |
-
import geemap.foliumap as geemap
|
9 |
-
from datetime import date
|
10 |
-
from .rois import *
|
11 |
-
|
12 |
-
|
13 |
-
@st.cache
|
14 |
-
def uploaded_file_to_gdf(data):
|
15 |
-
import tempfile
|
16 |
-
import os
|
17 |
-
import uuid
|
18 |
-
|
19 |
-
_, file_extension = os.path.splitext(data.name)
|
20 |
-
file_id = str(uuid.uuid4())
|
21 |
-
file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}")
|
22 |
-
|
23 |
-
with open(file_path, "wb") as file:
|
24 |
-
file.write(data.getbuffer())
|
25 |
-
|
26 |
-
if file_path.lower().endswith(".kml"):
|
27 |
-
gpd.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw"
|
28 |
-
gdf = gpd.read_file(file_path, driver="KML")
|
29 |
-
else:
|
30 |
-
gdf = gpd.read_file(file_path)
|
31 |
-
|
32 |
-
return gdf
|
33 |
-
|
34 |
-
|
35 |
-
def app():
|
36 |
-
|
37 |
-
today = date.today()
|
38 |
-
|
39 |
-
st.title("Create Timelapse")
|
40 |
-
|
41 |
-
st.markdown(
|
42 |
-
"""
|
43 |
-
An interactive web app for creating [Landsat](https://developers.google.com/earth-engine/datasets/catalog/landsat)/[GOES](https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16) timelapse for any location around the globe.
|
44 |
-
The app was built using [streamlit](https://streamlit.io), [geemap](https://geemap.org), and [Google Earth Engine](https://earthengine.google.com). For more info, check out my streamlit [blog post](https://blog.streamlit.io/creating-satellite-timelapse-with-streamlit-and-earth-engine).
|
45 |
-
"""
|
46 |
-
)
|
47 |
-
|
48 |
-
row1_col1, row1_col2 = st.columns([2, 1])
|
49 |
-
|
50 |
-
if st.session_state.get("zoom_level") is None:
|
51 |
-
st.session_state["zoom_level"] = 4
|
52 |
-
|
53 |
-
st.session_state["ee_asset_id"] = None
|
54 |
-
st.session_state["bands"] = None
|
55 |
-
st.session_state["palette"] = None
|
56 |
-
st.session_state["vis_params"] = None
|
57 |
-
|
58 |
-
with row1_col1:
|
59 |
-
m = geemap.Map(
|
60 |
-
basemap="HYBRID",
|
61 |
-
plugin_Draw=True,
|
62 |
-
Draw_export=True,
|
63 |
-
locate_control=True,
|
64 |
-
plugin_LatLngPopup=False,
|
65 |
-
)
|
66 |
-
m.add_basemap("ROADMAP")
|
67 |
-
|
68 |
-
with row1_col2:
|
69 |
-
|
70 |
-
keyword = st.text_input("Search for a location:", "")
|
71 |
-
if keyword:
|
72 |
-
locations = geemap.geocode(keyword)
|
73 |
-
if locations is not None and len(locations) > 0:
|
74 |
-
str_locations = [str(g)[1:-1] for g in locations]
|
75 |
-
location = st.selectbox("Select a location:", str_locations)
|
76 |
-
loc_index = str_locations.index(location)
|
77 |
-
selected_loc = locations[loc_index]
|
78 |
-
lat, lng = selected_loc.lat, selected_loc.lng
|
79 |
-
folium.Marker(location=[lat, lng], popup=location).add_to(m)
|
80 |
-
m.set_center(lng, lat, 12)
|
81 |
-
st.session_state["zoom_level"] = 12
|
82 |
-
|
83 |
-
collection = st.selectbox(
|
84 |
-
"Select a satellite image collection: ",
|
85 |
-
[
|
86 |
-
"Any Earth Engine ImageCollection",
|
87 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
88 |
-
"Sentinel-2 MSI Surface Reflectance",
|
89 |
-
"Geostationary Operational Environmental Satellites (GOES)",
|
90 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
91 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
92 |
-
"MODIS Ocean Color SMI",
|
93 |
-
"USDA National Agriculture Imagery Program (NAIP)",
|
94 |
-
],
|
95 |
-
index=1,
|
96 |
-
)
|
97 |
-
|
98 |
-
if collection in [
|
99 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
100 |
-
"Sentinel-2 MSI Surface Reflectance",
|
101 |
-
]:
|
102 |
-
roi_options = ["Uploaded GeoJSON"] + list(landsat_rois.keys())
|
103 |
-
|
104 |
-
elif collection == "Geostationary Operational Environmental Satellites (GOES)":
|
105 |
-
roi_options = ["Uploaded GeoJSON"] + list(goes_rois.keys())
|
106 |
-
|
107 |
-
elif collection in [
|
108 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
109 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
110 |
-
]:
|
111 |
-
roi_options = ["Uploaded GeoJSON"] + list(modis_rois.keys())
|
112 |
-
elif collection == "MODIS Ocean Color SMI":
|
113 |
-
roi_options = ["Uploaded GeoJSON"] + list(ocean_rois.keys())
|
114 |
-
else:
|
115 |
-
roi_options = ["Uploaded GeoJSON"]
|
116 |
-
|
117 |
-
if collection == "Any Earth Engine ImageCollection":
|
118 |
-
keyword = st.text_input("Enter a keyword to search (e.g., MODIS):", "")
|
119 |
-
if keyword:
|
120 |
-
|
121 |
-
assets = geemap.search_ee_data(keyword)
|
122 |
-
ee_assets = []
|
123 |
-
for asset in assets:
|
124 |
-
if asset["ee_id_snippet"].startswith("ee.ImageCollection"):
|
125 |
-
ee_assets.append(asset)
|
126 |
-
|
127 |
-
asset_titles = [x["title"] for x in ee_assets]
|
128 |
-
dataset = st.selectbox("Select a dataset:", asset_titles)
|
129 |
-
if len(ee_assets) > 0:
|
130 |
-
st.session_state["ee_assets"] = ee_assets
|
131 |
-
st.session_state["asset_titles"] = asset_titles
|
132 |
-
index = asset_titles.index(dataset)
|
133 |
-
ee_id = ee_assets[index]["id"]
|
134 |
-
else:
|
135 |
-
ee_id = ""
|
136 |
-
|
137 |
-
if dataset is not None:
|
138 |
-
with st.expander("Show dataset details", False):
|
139 |
-
index = asset_titles.index(dataset)
|
140 |
-
html = geemap.ee_data_html(st.session_state["ee_assets"][index])
|
141 |
-
st.markdown(html, True)
|
142 |
-
# elif collection == "MODIS Gap filled Land Surface Temperature Daily":
|
143 |
-
# ee_id = ""
|
144 |
-
else:
|
145 |
-
ee_id = ""
|
146 |
-
|
147 |
-
asset_id = st.text_input("Enter an ee.ImageCollection asset ID:", ee_id)
|
148 |
-
|
149 |
-
if asset_id:
|
150 |
-
with st.expander("Customize band combination and color palette", True):
|
151 |
-
try:
|
152 |
-
col = ee.ImageCollection.load(asset_id)
|
153 |
-
st.session_state["ee_asset_id"] = asset_id
|
154 |
-
except:
|
155 |
-
st.error("Invalid Earth Engine asset ID.")
|
156 |
-
st.session_state["ee_asset_id"] = None
|
157 |
-
return
|
158 |
-
|
159 |
-
img_bands = col.first().bandNames().getInfo()
|
160 |
-
if len(img_bands) >= 3:
|
161 |
-
default_bands = img_bands[:3][::-1]
|
162 |
-
else:
|
163 |
-
default_bands = img_bands[:]
|
164 |
-
bands = st.multiselect(
|
165 |
-
"Select one or three bands (RGB):", img_bands, default_bands
|
166 |
-
)
|
167 |
-
st.session_state["bands"] = bands
|
168 |
-
|
169 |
-
if len(bands) == 1:
|
170 |
-
palette_options = st.selectbox(
|
171 |
-
"Color palette",
|
172 |
-
cm.list_colormaps(),
|
173 |
-
index=2,
|
174 |
-
)
|
175 |
-
palette_values = cm.get_palette(palette_options, 15)
|
176 |
-
palette = st.text_area(
|
177 |
-
"Enter a custom palette:",
|
178 |
-
palette_values,
|
179 |
-
)
|
180 |
-
st.write(
|
181 |
-
cm.plot_colormap(cmap=palette_options, return_fig=True)
|
182 |
-
)
|
183 |
-
st.session_state["palette"] = eval(palette)
|
184 |
-
|
185 |
-
if bands:
|
186 |
-
vis_params = st.text_area(
|
187 |
-
"Enter visualization parameters",
|
188 |
-
"{'bands': ["
|
189 |
-
+ ", ".join([f"'{band}'" for band in bands])
|
190 |
-
+ "]}",
|
191 |
-
)
|
192 |
-
else:
|
193 |
-
vis_params = st.text_area(
|
194 |
-
"Enter visualization parameters",
|
195 |
-
"{}",
|
196 |
-
)
|
197 |
-
try:
|
198 |
-
st.session_state["vis_params"] = eval(vis_params)
|
199 |
-
st.session_state["vis_params"]["palette"] = st.session_state[
|
200 |
-
"palette"
|
201 |
-
]
|
202 |
-
except Exception as e:
|
203 |
-
st.session_state["vis_params"] = None
|
204 |
-
st.error(
|
205 |
-
f"Invalid visualization parameters. It must be a dictionary."
|
206 |
-
)
|
207 |
-
|
208 |
-
elif collection == "MODIS Gap filled Land Surface Temperature Daily":
|
209 |
-
with st.expander("Show dataset details", False):
|
210 |
-
st.markdown(
|
211 |
-
"""
|
212 |
-
See the [Awesome GEE Community Datasets](https://samapriya.github.io/awesome-gee-community-datasets/projects/daily_lst/).
|
213 |
-
"""
|
214 |
-
)
|
215 |
-
|
216 |
-
MODIS_options = ["Daytime (1:30 pm)", "Nighttime (1:30 am)"]
|
217 |
-
MODIS_option = st.selectbox("Select a MODIS dataset:", MODIS_options)
|
218 |
-
if MODIS_option == "Daytime (1:30 pm)":
|
219 |
-
st.session_state[
|
220 |
-
"ee_asset_id"
|
221 |
-
] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
|
222 |
-
else:
|
223 |
-
st.session_state[
|
224 |
-
"ee_asset_id"
|
225 |
-
] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
|
226 |
-
|
227 |
-
palette_options = st.selectbox(
|
228 |
-
"Color palette",
|
229 |
-
cm.list_colormaps(),
|
230 |
-
index=90,
|
231 |
-
)
|
232 |
-
palette_values = cm.get_palette(palette_options, 15)
|
233 |
-
palette = st.text_area(
|
234 |
-
"Enter a custom palette:",
|
235 |
-
palette_values,
|
236 |
-
)
|
237 |
-
st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
|
238 |
-
st.session_state["palette"] = eval(palette)
|
239 |
-
elif collection == "MODIS Ocean Color SMI":
|
240 |
-
with st.expander("Show dataset details", False):
|
241 |
-
st.markdown(
|
242 |
-
"""
|
243 |
-
See the [Earth Engine Data Catalog](https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI).
|
244 |
-
"""
|
245 |
-
)
|
246 |
-
|
247 |
-
MODIS_options = ["Aqua", "Terra"]
|
248 |
-
MODIS_option = st.selectbox("Select a satellite:", MODIS_options)
|
249 |
-
st.session_state["ee_asset_id"] = MODIS_option
|
250 |
-
# if MODIS_option == "Daytime (1:30 pm)":
|
251 |
-
# st.session_state[
|
252 |
-
# "ee_asset_id"
|
253 |
-
# ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
|
254 |
-
# else:
|
255 |
-
# st.session_state[
|
256 |
-
# "ee_asset_id"
|
257 |
-
# ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
|
258 |
-
|
259 |
-
band_dict = {
|
260 |
-
"Chlorophyll a concentration": "chlor_a",
|
261 |
-
"Normalized fluorescence line height": "nflh",
|
262 |
-
"Particulate organic carbon": "poc",
|
263 |
-
"Sea surface temperature": "sst",
|
264 |
-
"Remote sensing reflectance at band 412nm": "Rrs_412",
|
265 |
-
"Remote sensing reflectance at band 443nm": "Rrs_443",
|
266 |
-
"Remote sensing reflectance at band 469nm": "Rrs_469",
|
267 |
-
"Remote sensing reflectance at band 488nm": "Rrs_488",
|
268 |
-
"Remote sensing reflectance at band 531nm": "Rrs_531",
|
269 |
-
"Remote sensing reflectance at band 547nm": "Rrs_547",
|
270 |
-
"Remote sensing reflectance at band 555nm": "Rrs_555",
|
271 |
-
"Remote sensing reflectance at band 645nm": "Rrs_645",
|
272 |
-
"Remote sensing reflectance at band 667nm": "Rrs_667",
|
273 |
-
"Remote sensing reflectance at band 678nm": "Rrs_678",
|
274 |
-
}
|
275 |
-
|
276 |
-
band_options = list(band_dict.keys())
|
277 |
-
band = st.selectbox(
|
278 |
-
"Select a band",
|
279 |
-
band_options,
|
280 |
-
band_options.index("Sea surface temperature"),
|
281 |
-
)
|
282 |
-
st.session_state["band"] = band_dict[band]
|
283 |
-
|
284 |
-
colors = cm.list_colormaps()
|
285 |
-
palette_options = st.selectbox(
|
286 |
-
"Color palette",
|
287 |
-
colors,
|
288 |
-
index=colors.index("coolwarm"),
|
289 |
-
)
|
290 |
-
palette_values = cm.get_palette(palette_options, 15)
|
291 |
-
palette = st.text_area(
|
292 |
-
"Enter a custom palette:",
|
293 |
-
palette_values,
|
294 |
-
)
|
295 |
-
st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
|
296 |
-
st.session_state["palette"] = eval(palette)
|
297 |
-
|
298 |
-
sample_roi = st.selectbox(
|
299 |
-
"Select a sample ROI or upload a GeoJSON file:",
|
300 |
-
roi_options,
|
301 |
-
index=0,
|
302 |
-
)
|
303 |
-
|
304 |
-
add_outline = st.checkbox(
|
305 |
-
"Overlay an administrative boundary on timelapse", False
|
306 |
-
)
|
307 |
-
|
308 |
-
if add_outline:
|
309 |
-
|
310 |
-
with st.expander("Customize administrative boundary", True):
|
311 |
-
|
312 |
-
overlay_options = {
|
313 |
-
"User-defined": None,
|
314 |
-
"Continents": "continents",
|
315 |
-
"Countries": "countries",
|
316 |
-
"US States": "us_states",
|
317 |
-
"China": "china",
|
318 |
-
}
|
319 |
-
|
320 |
-
overlay = st.selectbox(
|
321 |
-
"Select an administrative boundary:",
|
322 |
-
list(overlay_options.keys()),
|
323 |
-
index=2,
|
324 |
-
)
|
325 |
-
|
326 |
-
overlay_data = overlay_options[overlay]
|
327 |
-
|
328 |
-
if overlay_data is None:
|
329 |
-
overlay_data = st.text_input(
|
330 |
-
"Enter an HTTP URL to a GeoJSON file or an ee.FeatureCollection asset id:",
|
331 |
-
"https://raw.githubusercontent.com/giswqs/geemap/master/examples/data/countries.geojson",
|
332 |
-
)
|
333 |
-
|
334 |
-
overlay_color = st.color_picker(
|
335 |
-
"Select a color for the administrative boundary:", "#000000"
|
336 |
-
)
|
337 |
-
overlay_width = st.slider(
|
338 |
-
"Select a line width for the administrative boundary:", 1, 20, 1
|
339 |
-
)
|
340 |
-
overlay_opacity = st.slider(
|
341 |
-
"Select an opacity for the administrative boundary:",
|
342 |
-
0.0,
|
343 |
-
1.0,
|
344 |
-
1.0,
|
345 |
-
0.05,
|
346 |
-
)
|
347 |
-
else:
|
348 |
-
overlay_data = None
|
349 |
-
overlay_color = "black"
|
350 |
-
overlay_width = 1
|
351 |
-
overlay_opacity = 1
|
352 |
-
|
353 |
-
with row1_col1:
|
354 |
-
|
355 |
-
with st.expander(
|
356 |
-
"Steps: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Expand this tab to see a demo π"
|
357 |
-
):
|
358 |
-
video_empty = st.empty()
|
359 |
-
|
360 |
-
data = st.file_uploader(
|
361 |
-
"Upload a GeoJSON file to use as an ROI. Customize timelapse parameters and then click the Submit button ππ",
|
362 |
-
type=["geojson", "kml", "zip"],
|
363 |
-
)
|
364 |
-
|
365 |
-
crs = "epsg:4326"
|
366 |
-
if sample_roi == "Uploaded GeoJSON":
|
367 |
-
if data is None:
|
368 |
-
# st.info(
|
369 |
-
# "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click Submit button"
|
370 |
-
# )
|
371 |
-
if collection in [
|
372 |
-
"Geostationary Operational Environmental Satellites (GOES)",
|
373 |
-
"USDA National Agriculture Imagery Program (NAIP)",
|
374 |
-
] and (not keyword):
|
375 |
-
m.set_center(-100, 40, 3)
|
376 |
-
# else:
|
377 |
-
# m.set_center(4.20, 18.63, zoom=2)
|
378 |
-
else:
|
379 |
-
if collection in [
|
380 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
381 |
-
"Sentinel-2 MSI Surface Reflectance",
|
382 |
-
]:
|
383 |
-
gdf = gpd.GeoDataFrame(
|
384 |
-
index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
|
385 |
-
)
|
386 |
-
elif (
|
387 |
-
collection
|
388 |
-
== "Geostationary Operational Environmental Satellites (GOES)"
|
389 |
-
):
|
390 |
-
gdf = gpd.GeoDataFrame(
|
391 |
-
index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
|
392 |
-
)
|
393 |
-
elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
|
394 |
-
gdf = gpd.GeoDataFrame(
|
395 |
-
index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
|
396 |
-
)
|
397 |
-
|
398 |
-
if sample_roi != "Uploaded GeoJSON":
|
399 |
-
|
400 |
-
if collection in [
|
401 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
402 |
-
"Sentinel-2 MSI Surface Reflectance",
|
403 |
-
]:
|
404 |
-
gdf = gpd.GeoDataFrame(
|
405 |
-
index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
|
406 |
-
)
|
407 |
-
elif (
|
408 |
-
collection
|
409 |
-
== "Geostationary Operational Environmental Satellites (GOES)"
|
410 |
-
):
|
411 |
-
gdf = gpd.GeoDataFrame(
|
412 |
-
index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
|
413 |
-
)
|
414 |
-
elif collection in [
|
415 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
416 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
417 |
-
]:
|
418 |
-
gdf = gpd.GeoDataFrame(
|
419 |
-
index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
|
420 |
-
)
|
421 |
-
elif collection == "MODIS Ocean Color SMI":
|
422 |
-
gdf = gpd.GeoDataFrame(
|
423 |
-
index=[0], crs=crs, geometry=[ocean_rois[sample_roi]]
|
424 |
-
)
|
425 |
-
st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
|
426 |
-
m.add_gdf(gdf, "ROI")
|
427 |
-
|
428 |
-
elif data:
|
429 |
-
gdf = uploaded_file_to_gdf(data)
|
430 |
-
st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
|
431 |
-
m.add_gdf(gdf, "ROI")
|
432 |
-
|
433 |
-
m.to_streamlit(height=600)
|
434 |
-
|
435 |
-
with row1_col2:
|
436 |
-
|
437 |
-
if collection in [
|
438 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
439 |
-
"Sentinel-2 MSI Surface Reflectance",
|
440 |
-
]:
|
441 |
-
|
442 |
-
if collection == "Landsat TM-ETM-OLI Surface Reflectance":
|
443 |
-
sensor_start_year = 1984
|
444 |
-
timelapse_title = "Landsat Timelapse"
|
445 |
-
timelapse_speed = 5
|
446 |
-
elif collection == "Sentinel-2 MSI Surface Reflectance":
|
447 |
-
sensor_start_year = 2015
|
448 |
-
timelapse_title = "Sentinel-2 Timelapse"
|
449 |
-
timelapse_speed = 5
|
450 |
-
video_empty.video("https://youtu.be/VVRK_-dEjR4")
|
451 |
-
|
452 |
-
with st.form("submit_landsat_form"):
|
453 |
-
|
454 |
-
roi = None
|
455 |
-
if st.session_state.get("roi") is not None:
|
456 |
-
roi = st.session_state.get("roi")
|
457 |
-
out_gif = geemap.temp_file_path(".gif")
|
458 |
-
|
459 |
-
title = st.text_input(
|
460 |
-
"Enter a title to show on the timelapse: ", timelapse_title
|
461 |
-
)
|
462 |
-
RGB = st.selectbox(
|
463 |
-
"Select an RGB band combination:",
|
464 |
-
[
|
465 |
-
"Red/Green/Blue",
|
466 |
-
"NIR/Red/Green",
|
467 |
-
"SWIR2/SWIR1/NIR",
|
468 |
-
"NIR/SWIR1/Red",
|
469 |
-
"SWIR2/NIR/Red",
|
470 |
-
"SWIR2/SWIR1/Red",
|
471 |
-
"SWIR1/NIR/Blue",
|
472 |
-
"NIR/SWIR1/Blue",
|
473 |
-
"SWIR2/NIR/Green",
|
474 |
-
"SWIR1/NIR/Red",
|
475 |
-
"SWIR2/NIR/SWIR1",
|
476 |
-
"SWIR1/NIR/SWIR2",
|
477 |
-
],
|
478 |
-
index=9,
|
479 |
-
)
|
480 |
-
|
481 |
-
frequency = st.selectbox(
|
482 |
-
"Select a temporal frequency:",
|
483 |
-
["year", "quarter", "month"],
|
484 |
-
index=0,
|
485 |
-
)
|
486 |
-
|
487 |
-
with st.expander("Customize timelapse"):
|
488 |
-
|
489 |
-
speed = st.slider("Frames per second:", 1, 30, timelapse_speed)
|
490 |
-
dimensions = st.slider(
|
491 |
-
"Maximum dimensions (Width*Height) in pixels", 768, 2000, 768
|
492 |
-
)
|
493 |
-
progress_bar_color = st.color_picker(
|
494 |
-
"Progress bar color:", "#0000ff"
|
495 |
-
)
|
496 |
-
years = st.slider(
|
497 |
-
"Start and end year:",
|
498 |
-
sensor_start_year,
|
499 |
-
today.year,
|
500 |
-
(sensor_start_year, today.year),
|
501 |
-
)
|
502 |
-
months = st.slider("Start and end month:", 1, 12, (1, 12))
|
503 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
504 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
505 |
-
apply_fmask = st.checkbox(
|
506 |
-
"Apply fmask (remove clouds, shadows, snow)", True
|
507 |
-
)
|
508 |
-
font_type = st.selectbox(
|
509 |
-
"Select the font type for the title:",
|
510 |
-
["arial.ttf", "alibaba.otf"],
|
511 |
-
index=0,
|
512 |
-
)
|
513 |
-
fading = st.slider(
|
514 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
515 |
-
)
|
516 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
517 |
-
|
518 |
-
empty_text = st.empty()
|
519 |
-
empty_image = st.empty()
|
520 |
-
empty_fire_image = st.empty()
|
521 |
-
empty_video = st.container()
|
522 |
-
submitted = st.form_submit_button("Submit")
|
523 |
-
if submitted:
|
524 |
-
|
525 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
526 |
-
empty_text.warning(
|
527 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
528 |
-
)
|
529 |
-
else:
|
530 |
-
|
531 |
-
empty_text.text("Computing... Please wait...")
|
532 |
-
|
533 |
-
start_year = years[0]
|
534 |
-
end_year = years[1]
|
535 |
-
start_date = str(months[0]).zfill(2) + "-01"
|
536 |
-
end_date = str(months[1]).zfill(2) + "-30"
|
537 |
-
bands = RGB.split("/")
|
538 |
-
|
539 |
-
try:
|
540 |
-
if collection == "Landsat TM-ETM-OLI Surface Reflectance":
|
541 |
-
out_gif = geemap.landsat_timelapse(
|
542 |
-
roi=roi,
|
543 |
-
out_gif=out_gif,
|
544 |
-
start_year=start_year,
|
545 |
-
end_year=end_year,
|
546 |
-
start_date=start_date,
|
547 |
-
end_date=end_date,
|
548 |
-
bands=bands,
|
549 |
-
apply_fmask=apply_fmask,
|
550 |
-
frames_per_second=speed,
|
551 |
-
dimensions=dimensions,
|
552 |
-
overlay_data=overlay_data,
|
553 |
-
overlay_color=overlay_color,
|
554 |
-
overlay_width=overlay_width,
|
555 |
-
overlay_opacity=overlay_opacity,
|
556 |
-
frequency=frequency,
|
557 |
-
date_format=None,
|
558 |
-
title=title,
|
559 |
-
title_xy=("2%", "90%"),
|
560 |
-
add_text=True,
|
561 |
-
text_xy=("2%", "2%"),
|
562 |
-
text_sequence=None,
|
563 |
-
font_type=font_type,
|
564 |
-
font_size=font_size,
|
565 |
-
font_color=font_color,
|
566 |
-
add_progress_bar=True,
|
567 |
-
progress_bar_color=progress_bar_color,
|
568 |
-
progress_bar_height=5,
|
569 |
-
loop=0,
|
570 |
-
mp4=mp4,
|
571 |
-
fading=fading,
|
572 |
-
)
|
573 |
-
elif collection == "Sentinel-2 MSI Surface Reflectance":
|
574 |
-
out_gif = geemap.sentinel2_timelapse(
|
575 |
-
roi=roi,
|
576 |
-
out_gif=out_gif,
|
577 |
-
start_year=start_year,
|
578 |
-
end_year=end_year,
|
579 |
-
start_date=start_date,
|
580 |
-
end_date=end_date,
|
581 |
-
bands=bands,
|
582 |
-
apply_fmask=apply_fmask,
|
583 |
-
frames_per_second=speed,
|
584 |
-
dimensions=dimensions,
|
585 |
-
overlay_data=overlay_data,
|
586 |
-
overlay_color=overlay_color,
|
587 |
-
overlay_width=overlay_width,
|
588 |
-
overlay_opacity=overlay_opacity,
|
589 |
-
frequency=frequency,
|
590 |
-
date_format=None,
|
591 |
-
title=title,
|
592 |
-
title_xy=("2%", "90%"),
|
593 |
-
add_text=True,
|
594 |
-
text_xy=("2%", "2%"),
|
595 |
-
text_sequence=None,
|
596 |
-
font_type=font_type,
|
597 |
-
font_size=font_size,
|
598 |
-
font_color=font_color,
|
599 |
-
add_progress_bar=True,
|
600 |
-
progress_bar_color=progress_bar_color,
|
601 |
-
progress_bar_height=5,
|
602 |
-
loop=0,
|
603 |
-
mp4=mp4,
|
604 |
-
fading=fading,
|
605 |
-
)
|
606 |
-
except:
|
607 |
-
empty_text.error(
|
608 |
-
"An error occurred while computing the timelapse. Your probably requested too much data. Try reducing the ROI or timespan."
|
609 |
-
)
|
610 |
-
st.stop()
|
611 |
-
|
612 |
-
if out_gif is not None and os.path.exists(out_gif):
|
613 |
-
|
614 |
-
empty_text.text(
|
615 |
-
"Right click the GIF to save it to your computerπ"
|
616 |
-
)
|
617 |
-
empty_image.image(out_gif)
|
618 |
-
|
619 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
620 |
-
if mp4 and os.path.exists(out_mp4):
|
621 |
-
with empty_video:
|
622 |
-
st.text(
|
623 |
-
"Right click the MP4 to save it to your computerπ"
|
624 |
-
)
|
625 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
626 |
-
|
627 |
-
else:
|
628 |
-
empty_text.error(
|
629 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
630 |
-
)
|
631 |
-
|
632 |
-
elif collection == "Geostationary Operational Environmental Satellites (GOES)":
|
633 |
-
|
634 |
-
video_empty.video("https://youtu.be/16fA2QORG4A")
|
635 |
-
|
636 |
-
with st.form("submit_goes_form"):
|
637 |
-
|
638 |
-
roi = None
|
639 |
-
if st.session_state.get("roi") is not None:
|
640 |
-
roi = st.session_state.get("roi")
|
641 |
-
out_gif = geemap.temp_file_path(".gif")
|
642 |
-
|
643 |
-
satellite = st.selectbox("Select a satellite:", ["GOES-17", "GOES-16"])
|
644 |
-
earliest_date = datetime.date(2017, 7, 10)
|
645 |
-
latest_date = datetime.date.today()
|
646 |
-
|
647 |
-
if sample_roi == "Uploaded GeoJSON":
|
648 |
-
roi_start_date = today - datetime.timedelta(days=2)
|
649 |
-
roi_end_date = today - datetime.timedelta(days=1)
|
650 |
-
roi_start_time = datetime.time(14, 00)
|
651 |
-
roi_end_time = datetime.time(1, 00)
|
652 |
-
else:
|
653 |
-
roi_start = goes_rois[sample_roi]["start_time"]
|
654 |
-
roi_end = goes_rois[sample_roi]["end_time"]
|
655 |
-
roi_start_date = datetime.datetime.strptime(
|
656 |
-
roi_start[:10], "%Y-%m-%d"
|
657 |
-
)
|
658 |
-
roi_end_date = datetime.datetime.strptime(roi_end[:10], "%Y-%m-%d")
|
659 |
-
roi_start_time = datetime.time(
|
660 |
-
int(roi_start[11:13]), int(roi_start[14:16])
|
661 |
-
)
|
662 |
-
roi_end_time = datetime.time(
|
663 |
-
int(roi_end[11:13]), int(roi_end[14:16])
|
664 |
-
)
|
665 |
-
|
666 |
-
start_date = st.date_input("Select the start date:", roi_start_date)
|
667 |
-
end_date = st.date_input("Select the end date:", roi_end_date)
|
668 |
-
|
669 |
-
with st.expander("Customize timelapse"):
|
670 |
-
|
671 |
-
add_fire = st.checkbox("Add Fire/Hotspot Characterization", False)
|
672 |
-
|
673 |
-
scan_type = st.selectbox(
|
674 |
-
"Select a scan type:", ["Full Disk", "CONUS", "Mesoscale"]
|
675 |
-
)
|
676 |
-
|
677 |
-
start_time = st.time_input(
|
678 |
-
"Select the start time of the start date:", roi_start_time
|
679 |
-
)
|
680 |
-
|
681 |
-
end_time = st.time_input(
|
682 |
-
"Select the end time of the end date:", roi_end_time
|
683 |
-
)
|
684 |
-
|
685 |
-
start = (
|
686 |
-
start_date.strftime("%Y-%m-%d")
|
687 |
-
+ "T"
|
688 |
-
+ start_time.strftime("%H:%M:%S")
|
689 |
-
)
|
690 |
-
end = (
|
691 |
-
end_date.strftime("%Y-%m-%d")
|
692 |
-
+ "T"
|
693 |
-
+ end_time.strftime("%H:%M:%S")
|
694 |
-
)
|
695 |
-
|
696 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
697 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
698 |
-
progress_bar_color = st.color_picker(
|
699 |
-
"Progress bar color:", "#0000ff"
|
700 |
-
)
|
701 |
-
font_size = st.slider("Font size:", 10, 50, 20)
|
702 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
703 |
-
fading = st.slider(
|
704 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
705 |
-
)
|
706 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
707 |
-
|
708 |
-
empty_text = st.empty()
|
709 |
-
empty_image = st.empty()
|
710 |
-
empty_video = st.container()
|
711 |
-
empty_fire_text = st.empty()
|
712 |
-
empty_fire_image = st.empty()
|
713 |
-
|
714 |
-
submitted = st.form_submit_button("Submit")
|
715 |
-
if submitted:
|
716 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
717 |
-
empty_text.warning(
|
718 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
719 |
-
)
|
720 |
-
else:
|
721 |
-
empty_text.text("Computing... Please wait...")
|
722 |
-
|
723 |
-
geemap.goes_timelapse(
|
724 |
-
out_gif,
|
725 |
-
start_date=start,
|
726 |
-
end_date=end,
|
727 |
-
data=satellite,
|
728 |
-
scan=scan_type.replace(" ", "_").lower(),
|
729 |
-
region=roi,
|
730 |
-
dimensions=768,
|
731 |
-
framesPerSecond=speed,
|
732 |
-
date_format="YYYY-MM-dd HH:mm",
|
733 |
-
xy=("3%", "3%"),
|
734 |
-
text_sequence=None,
|
735 |
-
font_type="arial.ttf",
|
736 |
-
font_size=font_size,
|
737 |
-
font_color=font_color,
|
738 |
-
add_progress_bar=add_progress_bar,
|
739 |
-
progress_bar_color=progress_bar_color,
|
740 |
-
progress_bar_height=5,
|
741 |
-
loop=0,
|
742 |
-
overlay_data=overlay_data,
|
743 |
-
overlay_color=overlay_color,
|
744 |
-
overlay_width=overlay_width,
|
745 |
-
overlay_opacity=overlay_opacity,
|
746 |
-
mp4=mp4,
|
747 |
-
fading=fading,
|
748 |
-
)
|
749 |
-
|
750 |
-
if out_gif is not None and os.path.exists(out_gif):
|
751 |
-
empty_text.text(
|
752 |
-
"Right click the GIF to save it to your computerπ"
|
753 |
-
)
|
754 |
-
empty_image.image(out_gif)
|
755 |
-
|
756 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
757 |
-
if mp4 and os.path.exists(out_mp4):
|
758 |
-
with empty_video:
|
759 |
-
st.text(
|
760 |
-
"Right click the MP4 to save it to your computerπ"
|
761 |
-
)
|
762 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
763 |
-
|
764 |
-
if add_fire:
|
765 |
-
out_fire_gif = geemap.temp_file_path(".gif")
|
766 |
-
empty_fire_text.text(
|
767 |
-
"Delineating Fire Hotspot... Please wait..."
|
768 |
-
)
|
769 |
-
geemap.goes_fire_timelapse(
|
770 |
-
out_fire_gif,
|
771 |
-
start_date=start,
|
772 |
-
end_date=end,
|
773 |
-
data=satellite,
|
774 |
-
scan=scan_type.replace(" ", "_").lower(),
|
775 |
-
region=roi,
|
776 |
-
dimensions=768,
|
777 |
-
framesPerSecond=speed,
|
778 |
-
date_format="YYYY-MM-dd HH:mm",
|
779 |
-
xy=("3%", "3%"),
|
780 |
-
text_sequence=None,
|
781 |
-
font_type="arial.ttf",
|
782 |
-
font_size=font_size,
|
783 |
-
font_color=font_color,
|
784 |
-
add_progress_bar=add_progress_bar,
|
785 |
-
progress_bar_color=progress_bar_color,
|
786 |
-
progress_bar_height=5,
|
787 |
-
loop=0,
|
788 |
-
)
|
789 |
-
if os.path.exists(out_fire_gif):
|
790 |
-
empty_fire_image.image(out_fire_gif)
|
791 |
-
else:
|
792 |
-
empty_text.text(
|
793 |
-
"Something went wrong, either the ROI is too big or there are no data available for the specified date range. Please try a smaller ROI or different date range."
|
794 |
-
)
|
795 |
-
|
796 |
-
elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
|
797 |
-
|
798 |
-
video_empty.video("https://youtu.be/16fA2QORG4A")
|
799 |
-
|
800 |
-
satellite = st.selectbox("Select a satellite:", ["Terra", "Aqua"])
|
801 |
-
band = st.selectbox("Select a band:", ["NDVI", "EVI"])
|
802 |
-
|
803 |
-
with st.form("submit_modis_form"):
|
804 |
-
|
805 |
-
roi = None
|
806 |
-
if st.session_state.get("roi") is not None:
|
807 |
-
roi = st.session_state.get("roi")
|
808 |
-
out_gif = geemap.temp_file_path(".gif")
|
809 |
-
|
810 |
-
with st.expander("Customize timelapse"):
|
811 |
-
|
812 |
-
start = st.date_input(
|
813 |
-
"Select a start date:", datetime.date(2000, 2, 8)
|
814 |
-
)
|
815 |
-
end = st.date_input("Select an end date:", datetime.date.today())
|
816 |
-
|
817 |
-
start_date = start.strftime("%Y-%m-%d")
|
818 |
-
end_date = end.strftime("%Y-%m-%d")
|
819 |
-
|
820 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
821 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
822 |
-
progress_bar_color = st.color_picker(
|
823 |
-
"Progress bar color:", "#0000ff"
|
824 |
-
)
|
825 |
-
font_size = st.slider("Font size:", 10, 50, 20)
|
826 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
827 |
-
|
828 |
-
font_type = st.selectbox(
|
829 |
-
"Select the font type for the title:",
|
830 |
-
["arial.ttf", "alibaba.otf"],
|
831 |
-
index=0,
|
832 |
-
)
|
833 |
-
fading = st.slider(
|
834 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
835 |
-
)
|
836 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
837 |
-
|
838 |
-
empty_text = st.empty()
|
839 |
-
empty_image = st.empty()
|
840 |
-
empty_video = st.container()
|
841 |
-
|
842 |
-
submitted = st.form_submit_button("Submit")
|
843 |
-
if submitted:
|
844 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
845 |
-
empty_text.warning(
|
846 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
847 |
-
)
|
848 |
-
else:
|
849 |
-
|
850 |
-
empty_text.text("Computing... Please wait...")
|
851 |
-
|
852 |
-
geemap.modis_ndvi_timelapse(
|
853 |
-
out_gif,
|
854 |
-
satellite,
|
855 |
-
band,
|
856 |
-
start_date,
|
857 |
-
end_date,
|
858 |
-
roi,
|
859 |
-
768,
|
860 |
-
speed,
|
861 |
-
overlay_data=overlay_data,
|
862 |
-
overlay_color=overlay_color,
|
863 |
-
overlay_width=overlay_width,
|
864 |
-
overlay_opacity=overlay_opacity,
|
865 |
-
mp4=mp4,
|
866 |
-
fading=fading,
|
867 |
-
)
|
868 |
-
|
869 |
-
geemap.reduce_gif_size(out_gif)
|
870 |
-
|
871 |
-
empty_text.text(
|
872 |
-
"Right click the GIF to save it to your computerπ"
|
873 |
-
)
|
874 |
-
empty_image.image(out_gif)
|
875 |
-
|
876 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
877 |
-
if mp4 and os.path.exists(out_mp4):
|
878 |
-
with empty_video:
|
879 |
-
st.text(
|
880 |
-
"Right click the MP4 to save it to your computerπ"
|
881 |
-
)
|
882 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
883 |
-
|
884 |
-
elif collection == "Any Earth Engine ImageCollection":
|
885 |
-
|
886 |
-
with st.form("submit_ts_form"):
|
887 |
-
with st.expander("Customize timelapse"):
|
888 |
-
|
889 |
-
title = st.text_input(
|
890 |
-
"Enter a title to show on the timelapse: ", "Timelapse"
|
891 |
-
)
|
892 |
-
start_date = st.date_input(
|
893 |
-
"Select the start date:", datetime.date(2020, 1, 1)
|
894 |
-
)
|
895 |
-
end_date = st.date_input(
|
896 |
-
"Select the end date:", datetime.date.today()
|
897 |
-
)
|
898 |
-
frequency = st.selectbox(
|
899 |
-
"Select a temporal frequency:",
|
900 |
-
["year", "quarter", "month", "day", "hour", "minute", "second"],
|
901 |
-
index=0,
|
902 |
-
)
|
903 |
-
reducer = st.selectbox(
|
904 |
-
"Select a reducer for aggregating data:",
|
905 |
-
["median", "mean", "min", "max", "sum", "variance", "stdDev"],
|
906 |
-
index=0,
|
907 |
-
)
|
908 |
-
data_format = st.selectbox(
|
909 |
-
"Select a date format to show on the timelapse:",
|
910 |
-
[
|
911 |
-
"YYYY-MM-dd",
|
912 |
-
"YYYY",
|
913 |
-
"YYMM-MM",
|
914 |
-
"YYYY-MM-dd HH:mm",
|
915 |
-
"YYYY-MM-dd HH:mm:ss",
|
916 |
-
"HH:mm",
|
917 |
-
"HH:mm:ss",
|
918 |
-
"w",
|
919 |
-
"M",
|
920 |
-
"d",
|
921 |
-
"D",
|
922 |
-
],
|
923 |
-
index=0,
|
924 |
-
)
|
925 |
-
|
926 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
927 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
928 |
-
progress_bar_color = st.color_picker(
|
929 |
-
"Progress bar color:", "#0000ff"
|
930 |
-
)
|
931 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
932 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
933 |
-
font_type = st.selectbox(
|
934 |
-
"Select the font type for the title:",
|
935 |
-
["arial.ttf", "alibaba.otf"],
|
936 |
-
index=0,
|
937 |
-
)
|
938 |
-
fading = st.slider(
|
939 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
940 |
-
)
|
941 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
942 |
-
|
943 |
-
empty_text = st.empty()
|
944 |
-
empty_image = st.empty()
|
945 |
-
empty_video = st.container()
|
946 |
-
empty_fire_image = st.empty()
|
947 |
-
|
948 |
-
roi = None
|
949 |
-
if st.session_state.get("roi") is not None:
|
950 |
-
roi = st.session_state.get("roi")
|
951 |
-
out_gif = geemap.temp_file_path(".gif")
|
952 |
-
|
953 |
-
submitted = st.form_submit_button("Submit")
|
954 |
-
if submitted:
|
955 |
-
|
956 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
957 |
-
empty_text.warning(
|
958 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
959 |
-
)
|
960 |
-
else:
|
961 |
-
|
962 |
-
empty_text.text("Computing... Please wait...")
|
963 |
-
try:
|
964 |
-
geemap.create_timelapse(
|
965 |
-
st.session_state.get("ee_asset_id"),
|
966 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
967 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
968 |
-
region=roi,
|
969 |
-
frequency=frequency,
|
970 |
-
reducer=reducer,
|
971 |
-
date_format=data_format,
|
972 |
-
out_gif=out_gif,
|
973 |
-
bands=st.session_state.get("bands"),
|
974 |
-
palette=st.session_state.get("palette"),
|
975 |
-
vis_params=st.session_state.get("vis_params"),
|
976 |
-
dimensions=768,
|
977 |
-
frames_per_second=speed,
|
978 |
-
crs="EPSG:3857",
|
979 |
-
overlay_data=overlay_data,
|
980 |
-
overlay_color=overlay_color,
|
981 |
-
overlay_width=overlay_width,
|
982 |
-
overlay_opacity=overlay_opacity,
|
983 |
-
title=title,
|
984 |
-
title_xy=("2%", "90%"),
|
985 |
-
add_text=True,
|
986 |
-
text_xy=("2%", "2%"),
|
987 |
-
text_sequence=None,
|
988 |
-
font_type=font_type,
|
989 |
-
font_size=font_size,
|
990 |
-
font_color=font_color,
|
991 |
-
add_progress_bar=add_progress_bar,
|
992 |
-
progress_bar_color=progress_bar_color,
|
993 |
-
progress_bar_height=5,
|
994 |
-
loop=0,
|
995 |
-
mp4=mp4,
|
996 |
-
fading=fading,
|
997 |
-
)
|
998 |
-
except:
|
999 |
-
empty_text.error(
|
1000 |
-
"An error occurred while computing the timelapse. You probably requested too much data. Try reducing the ROI or timespan."
|
1001 |
-
)
|
1002 |
-
|
1003 |
-
empty_text.text(
|
1004 |
-
"Right click the GIF to save it to your computerπ"
|
1005 |
-
)
|
1006 |
-
empty_image.image(out_gif)
|
1007 |
-
|
1008 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1009 |
-
if mp4 and os.path.exists(out_mp4):
|
1010 |
-
with empty_video:
|
1011 |
-
st.text(
|
1012 |
-
"Right click the MP4 to save it to your computerπ"
|
1013 |
-
)
|
1014 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1015 |
-
|
1016 |
-
elif collection in [
|
1017 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
1018 |
-
"MODIS Ocean Color SMI",
|
1019 |
-
]:
|
1020 |
-
|
1021 |
-
with st.form("submit_ts_form"):
|
1022 |
-
with st.expander("Customize timelapse"):
|
1023 |
-
|
1024 |
-
title = st.text_input(
|
1025 |
-
"Enter a title to show on the timelapse: ",
|
1026 |
-
"Surface Temperature",
|
1027 |
-
)
|
1028 |
-
start_date = st.date_input(
|
1029 |
-
"Select the start date:", datetime.date(2018, 1, 1)
|
1030 |
-
)
|
1031 |
-
end_date = st.date_input(
|
1032 |
-
"Select the end date:", datetime.date(2020, 12, 31)
|
1033 |
-
)
|
1034 |
-
frequency = st.selectbox(
|
1035 |
-
"Select a temporal frequency:",
|
1036 |
-
["year", "quarter", "month", "week", "day"],
|
1037 |
-
index=2,
|
1038 |
-
)
|
1039 |
-
reducer = st.selectbox(
|
1040 |
-
"Select a reducer for aggregating data:",
|
1041 |
-
["median", "mean", "min", "max", "sum", "variance", "stdDev"],
|
1042 |
-
index=0,
|
1043 |
-
)
|
1044 |
-
|
1045 |
-
vis_params = st.text_area(
|
1046 |
-
"Enter visualization parameters",
|
1047 |
-
"",
|
1048 |
-
help="Enter a string in the format of a dictionary, such as '{'min': 23, 'max': 32}'",
|
1049 |
-
)
|
1050 |
-
|
1051 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1052 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1053 |
-
progress_bar_color = st.color_picker(
|
1054 |
-
"Progress bar color:", "#0000ff"
|
1055 |
-
)
|
1056 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1057 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1058 |
-
font_type = st.selectbox(
|
1059 |
-
"Select the font type for the title:",
|
1060 |
-
["arial.ttf", "alibaba.otf"],
|
1061 |
-
index=0,
|
1062 |
-
)
|
1063 |
-
add_colorbar = st.checkbox("Add a colorbar", True)
|
1064 |
-
colorbar_label = st.text_input(
|
1065 |
-
"Enter the colorbar label:", "Surface Temperature (Β°C)"
|
1066 |
-
)
|
1067 |
-
fading = st.slider(
|
1068 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1069 |
-
)
|
1070 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1071 |
-
|
1072 |
-
empty_text = st.empty()
|
1073 |
-
empty_image = st.empty()
|
1074 |
-
empty_video = st.container()
|
1075 |
-
|
1076 |
-
roi = None
|
1077 |
-
if st.session_state.get("roi") is not None:
|
1078 |
-
roi = st.session_state.get("roi")
|
1079 |
-
out_gif = geemap.temp_file_path(".gif")
|
1080 |
-
|
1081 |
-
submitted = st.form_submit_button("Submit")
|
1082 |
-
if submitted:
|
1083 |
-
|
1084 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1085 |
-
empty_text.warning(
|
1086 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1087 |
-
)
|
1088 |
-
else:
|
1089 |
-
|
1090 |
-
empty_text.text("Computing... Please wait...")
|
1091 |
-
try:
|
1092 |
-
if (
|
1093 |
-
collection
|
1094 |
-
== "MODIS Gap filled Land Surface Temperature Daily"
|
1095 |
-
):
|
1096 |
-
out_gif = geemap.create_timelapse(
|
1097 |
-
st.session_state.get("ee_asset_id"),
|
1098 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1099 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1100 |
-
region=roi,
|
1101 |
-
bands=None,
|
1102 |
-
frequency=frequency,
|
1103 |
-
reducer=reducer,
|
1104 |
-
date_format=None,
|
1105 |
-
out_gif=out_gif,
|
1106 |
-
palette=st.session_state.get("palette"),
|
1107 |
-
vis_params=None,
|
1108 |
-
dimensions=768,
|
1109 |
-
frames_per_second=speed,
|
1110 |
-
crs="EPSG:3857",
|
1111 |
-
overlay_data=overlay_data,
|
1112 |
-
overlay_color=overlay_color,
|
1113 |
-
overlay_width=overlay_width,
|
1114 |
-
overlay_opacity=overlay_opacity,
|
1115 |
-
title=title,
|
1116 |
-
title_xy=("2%", "90%"),
|
1117 |
-
add_text=True,
|
1118 |
-
text_xy=("2%", "2%"),
|
1119 |
-
text_sequence=None,
|
1120 |
-
font_type=font_type,
|
1121 |
-
font_size=font_size,
|
1122 |
-
font_color=font_color,
|
1123 |
-
add_progress_bar=add_progress_bar,
|
1124 |
-
progress_bar_color=progress_bar_color,
|
1125 |
-
progress_bar_height=5,
|
1126 |
-
add_colorbar=add_colorbar,
|
1127 |
-
colorbar_label=colorbar_label,
|
1128 |
-
loop=0,
|
1129 |
-
mp4=mp4,
|
1130 |
-
fading=fading,
|
1131 |
-
)
|
1132 |
-
elif collection == "MODIS Ocean Color SMI":
|
1133 |
-
if vis_params.startswith("{") and vis_params.endswith(
|
1134 |
-
"}"
|
1135 |
-
):
|
1136 |
-
vis_params = eval(vis_params)
|
1137 |
-
else:
|
1138 |
-
vis_params = None
|
1139 |
-
out_gif = geemap.modis_ocean_color_timelapse(
|
1140 |
-
st.session_state.get("ee_asset_id"),
|
1141 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1142 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1143 |
-
region=roi,
|
1144 |
-
bands=st.session_state["band"],
|
1145 |
-
frequency=frequency,
|
1146 |
-
reducer=reducer,
|
1147 |
-
date_format=None,
|
1148 |
-
out_gif=out_gif,
|
1149 |
-
palette=st.session_state.get("palette"),
|
1150 |
-
vis_params=vis_params,
|
1151 |
-
dimensions=768,
|
1152 |
-
frames_per_second=speed,
|
1153 |
-
crs="EPSG:3857",
|
1154 |
-
overlay_data=overlay_data,
|
1155 |
-
overlay_color=overlay_color,
|
1156 |
-
overlay_width=overlay_width,
|
1157 |
-
overlay_opacity=overlay_opacity,
|
1158 |
-
title=title,
|
1159 |
-
title_xy=("2%", "90%"),
|
1160 |
-
add_text=True,
|
1161 |
-
text_xy=("2%", "2%"),
|
1162 |
-
text_sequence=None,
|
1163 |
-
font_type=font_type,
|
1164 |
-
font_size=font_size,
|
1165 |
-
font_color=font_color,
|
1166 |
-
add_progress_bar=add_progress_bar,
|
1167 |
-
progress_bar_color=progress_bar_color,
|
1168 |
-
progress_bar_height=5,
|
1169 |
-
add_colorbar=add_colorbar,
|
1170 |
-
colorbar_label=colorbar_label,
|
1171 |
-
loop=0,
|
1172 |
-
mp4=mp4,
|
1173 |
-
fading=fading,
|
1174 |
-
)
|
1175 |
-
except:
|
1176 |
-
empty_text.error(
|
1177 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
1178 |
-
)
|
1179 |
-
|
1180 |
-
if out_gif is not None and os.path.exists(out_gif):
|
1181 |
-
|
1182 |
-
geemap.reduce_gif_size(out_gif)
|
1183 |
-
|
1184 |
-
empty_text.text(
|
1185 |
-
"Right click the GIF to save it to your computerπ"
|
1186 |
-
)
|
1187 |
-
empty_image.image(out_gif)
|
1188 |
-
|
1189 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1190 |
-
if mp4 and os.path.exists(out_mp4):
|
1191 |
-
with empty_video:
|
1192 |
-
st.text(
|
1193 |
-
"Right click the MP4 to save it to your computerπ"
|
1194 |
-
)
|
1195 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1196 |
-
|
1197 |
-
else:
|
1198 |
-
st.error(
|
1199 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
1200 |
-
)
|
1201 |
-
|
1202 |
-
elif collection == "USDA National Agriculture Imagery Program (NAIP)":
|
1203 |
-
|
1204 |
-
with st.form("submit_naip_form"):
|
1205 |
-
with st.expander("Customize timelapse"):
|
1206 |
-
|
1207 |
-
title = st.text_input(
|
1208 |
-
"Enter a title to show on the timelapse: ", "NAIP Timelapse"
|
1209 |
-
)
|
1210 |
-
|
1211 |
-
years = st.slider(
|
1212 |
-
"Start and end year:",
|
1213 |
-
2003,
|
1214 |
-
today.year,
|
1215 |
-
(2003, today.year),
|
1216 |
-
)
|
1217 |
-
|
1218 |
-
bands = st.selectbox(
|
1219 |
-
"Select a band combination:", ["N/R/G", "R/G/B"], index=0
|
1220 |
-
)
|
1221 |
-
|
1222 |
-
speed = st.slider("Frames per second:", 1, 30, 3)
|
1223 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1224 |
-
progress_bar_color = st.color_picker(
|
1225 |
-
"Progress bar color:", "#0000ff"
|
1226 |
-
)
|
1227 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1228 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1229 |
-
font_type = st.selectbox(
|
1230 |
-
"Select the font type for the title:",
|
1231 |
-
["arial.ttf", "alibaba.otf"],
|
1232 |
-
index=0,
|
1233 |
-
)
|
1234 |
-
fading = st.slider(
|
1235 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1236 |
-
)
|
1237 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1238 |
-
|
1239 |
-
empty_text = st.empty()
|
1240 |
-
empty_image = st.empty()
|
1241 |
-
empty_video = st.container()
|
1242 |
-
empty_fire_image = st.empty()
|
1243 |
-
|
1244 |
-
roi = None
|
1245 |
-
if st.session_state.get("roi") is not None:
|
1246 |
-
roi = st.session_state.get("roi")
|
1247 |
-
out_gif = geemap.temp_file_path(".gif")
|
1248 |
-
|
1249 |
-
submitted = st.form_submit_button("Submit")
|
1250 |
-
if submitted:
|
1251 |
-
|
1252 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1253 |
-
empty_text.warning(
|
1254 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1255 |
-
)
|
1256 |
-
else:
|
1257 |
-
|
1258 |
-
empty_text.text("Computing... Please wait...")
|
1259 |
-
try:
|
1260 |
-
geemap.naip_timelapse(
|
1261 |
-
roi,
|
1262 |
-
years[0],
|
1263 |
-
years[1],
|
1264 |
-
out_gif,
|
1265 |
-
bands=bands.split("/"),
|
1266 |
-
palette=st.session_state.get("palette"),
|
1267 |
-
vis_params=None,
|
1268 |
-
dimensions=768,
|
1269 |
-
frames_per_second=speed,
|
1270 |
-
crs="EPSG:3857",
|
1271 |
-
overlay_data=overlay_data,
|
1272 |
-
overlay_color=overlay_color,
|
1273 |
-
overlay_width=overlay_width,
|
1274 |
-
overlay_opacity=overlay_opacity,
|
1275 |
-
title=title,
|
1276 |
-
title_xy=("2%", "90%"),
|
1277 |
-
add_text=True,
|
1278 |
-
text_xy=("2%", "2%"),
|
1279 |
-
text_sequence=None,
|
1280 |
-
font_type=font_type,
|
1281 |
-
font_size=font_size,
|
1282 |
-
font_color=font_color,
|
1283 |
-
add_progress_bar=add_progress_bar,
|
1284 |
-
progress_bar_color=progress_bar_color,
|
1285 |
-
progress_bar_height=5,
|
1286 |
-
loop=0,
|
1287 |
-
mp4=mp4,
|
1288 |
-
fading=fading,
|
1289 |
-
)
|
1290 |
-
except:
|
1291 |
-
empty_text.error(
|
1292 |
-
"Something went wrong. You either requested too much data or the ROI is outside the U.S."
|
1293 |
-
)
|
1294 |
-
|
1295 |
-
if out_gif is not None and os.path.exists(out_gif):
|
1296 |
-
|
1297 |
-
empty_text.text(
|
1298 |
-
"Right click the GIF to save it to your computerπ"
|
1299 |
-
)
|
1300 |
-
empty_image.image(out_gif)
|
1301 |
-
|
1302 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1303 |
-
if mp4 and os.path.exists(out_mp4):
|
1304 |
-
with empty_video:
|
1305 |
-
st.text(
|
1306 |
-
"Right click the MP4 to save it to your computerπ"
|
1307 |
-
)
|
1308 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1309 |
-
|
1310 |
-
else:
|
1311 |
-
st.error(
|
1312 |
-
"Something went wrong. You either requested too much data or the ROI is outside the U.S."
|
1313 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,77 +0,0 @@
|
|
1 |
-
https://www.maxar.com/open-data/california-colorado-fires
|
2 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2018-02-16/pine-gulch-fire20/1030010076004E00.tif
|
3 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2018-08-18/pine-gulch-fire20/1040010041D3B300.tif
|
4 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2018-11-13/grizzly-creek-fire20/1040010045785200.tif
|
5 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2018-11-13/grizzly-creek-fire20/10400100443AEC00.tif
|
6 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-02-06/czu-lightning-complex-fire/104001004941E100.tif
|
7 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-02-18/cameron-peak-fire20/103001008DA5B500.tif
|
8 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-02-22/czu-lightning-complex-fire/103001008DB2E200.tif
|
9 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-04-01/grizzly-creek-fire20/104001004881EF00.tif
|
10 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-04-17/czu-lightning-complex-fire/103001008F905300.tif
|
11 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-04-17/czu-lightning-complex-fire/1030010092B22200.tif
|
12 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-06-27/czu-lightning-complex-fire/1030010094A52300.tif
|
13 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-09-08/czu-lightning-complex-fire/103001009C9FBB00.tif
|
14 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-09-24/lnu-lightning-complex-fire/103001009A079B00.tif
|
15 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-10-05/czu-lightning-complex-fire/103001009C10F800.tif
|
16 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-10-05/czu-lightning-complex-fire/103001009A266800.tif
|
17 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-11-04/czu-lightning-complex-fire/1050010019917900.tif
|
18 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-11-04/czu-lightning-complex-fire/1050010019917800.tif
|
19 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-11-18/czu-lightning-complex-fire/1050010019C2F600.tif
|
20 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-11-28/cameron-peak-fire20/103001009D72E000.tif
|
21 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-12-10/czu-lightning-complex-fire/105001001A3A8700.tif
|
22 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-12-28/lnu-lightning-complex-fire/10300100A1972700.tif
|
23 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2019-12-28/lnu-lightning-complex-fire/103001009F5D6B00.tif
|
24 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-01-15/cameron-peak-fire20/1040010057992100.tif
|
25 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-04-15/lnu-lightning-complex-fire/10300100A4B23600.tif
|
26 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-04-23/czu-lightning-complex-fire/10300100A589D100.tif
|
27 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-05-09/lnu-lightning-complex-fire/10300100A332EE00.tif
|
28 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-05-23/river-carmel-fires/10300100A77E9400.tif
|
29 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-05-23/river-carmel-fires/10300100A500A500.tif
|
30 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-05-24/river-carmel-fires/105001001D64E200.tif
|
31 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-06-27/lnu-lightning-complex-fire/10300100A8663800.tif
|
32 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-06-30/river-carmel-fires/10300100A9D60C00.tif
|
33 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-06-30/czu-lightning-complex-fire/10300100A8C66400.tif
|
34 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-06-30/czu-lightning-complex-fire/10300100A8892900.tif
|
35 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-07-11/czu-lightning-complex-fire/10300100AB381200.tif
|
36 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-07-11/czu-lightning-complex-fire/10300100AA180600.tif
|
37 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-07-13/pine-gulch-fire20/10300100AA57D700.tif
|
38 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-07-20/lnu-lightning-complex-fire/104001005C529000.tif
|
39 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/pre-event/2020-07-28/pine-gulch-fire20/104001005DB06E00.tif
|
40 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-14/pine-gulch-fire20/10300100AAC8DD00.tif
|
41 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-16/pine-gulch-fire20/104001005D4A6100.tif
|
42 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-17/grizzly-creek-fire20/10300100ACCA3700.tif
|
43 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-17/cameron-peak-fire20/10300100AB4ED400.tif
|
44 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-20/swir-cog/104A0100606FFE00.tif
|
45 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-20/pine-gulch-fire20/10300100ACD06200.tif
|
46 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-20/pine-gulch-fire20/10300100AAD4A000.tif
|
47 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-20/pine-gulch-fire20/10300100AA293800.tif
|
48 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-20/lnu-lightning-complex-fire/10400100606FFE00.tif
|
49 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/river-carmel-fires/10300100ACBA2B00.tif
|
50 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/river-carmel-fires/10300100AA49F600.tif
|
51 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/lnu-lightning-complex-fire/104001005C1AC900.tif
|
52 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/river-carmel-fires/104001005F9F5300.tif
|
53 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/river-carmel-fires/104001005F453300.tif
|
54 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/river-carmel-fires/10300100ADC14400.tif
|
55 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-21/czu-lightning-complex-fire/104001005F43D400.tif
|
56 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-23/grizzly-creek-fire20/104001005FA09C00.tif
|
57 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-23/grizzly-creek-fire20/104001005DC71000.tif
|
58 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-26/river-carmel-fires/105001001F58F000.tif
|
59 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-26/lnu-lightning-complex-fire/10300100AC163A00.tif
|
60 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-29/river-carmel-fires/10300100AAD27500.tif
|
61 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-08-29/river-carmel-fires/10300100A9C75A00.tif
|
62 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-09-03/cameron-peak-fire20/1040010060188800.tif
|
63 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-09-03/cameron-peak-fire20/104001005F7E6500.tif
|
64 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-09-03/cameron-peak-fire20/10300100AE685A00.tif
|
65 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-09-04/cameron-peak-fire20/1040010060761C00.tif
|
66 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-05/cameron-peak-fire20/104001006113B700.tif
|
67 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-05/cameron-peak-fire20/10400100610CD400.tif
|
68 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-12/cameron-peak-fire20/1040010062B14C00.tif
|
69 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-12/cameron-peak-fire20/10400100626BFA00.tif
|
70 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-12/cameron-peak-fire20/10400100622A6600.tif
|
71 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-12/cameron-peak-fire20/10400100606B6300.tif
|
72 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-12/cameron-peak-fire20/104001005F908800.tif
|
73 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-15/cameron-peak-fire20/10500100205EDA00.tif
|
74 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-15/cameron-peak-fire20/10500100205ED900.tif
|
75 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-22/east-troublesome-fire20/10300100B0004A00.tif
|
76 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-22/east-troublesome-fire20/10300100AD0D1200.tif
|
77 |
-
https://opendata.digitalglobe.com/events/california-fire-2020/post-event/2020-10-22/east-troublesome-fire20/10300100AD0CA600.tif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,34 +0,0 @@
|
|
1 |
-
<!DOCTYPE html>
|
2 |
-
<html lang="en">
|
3 |
-
<head>
|
4 |
-
<meta charset="utf-8">
|
5 |
-
<!-- Include the CesiumJS JavaScript and CSS files -->
|
6 |
-
<script src="https://cesium.com/downloads/cesiumjs/releases/1.88/Build/Cesium/Cesium.js"></script>
|
7 |
-
<link href="https://cesium.com/downloads/cesiumjs/releases/1.88/Build/Cesium/Widgets/widgets.css" rel="stylesheet">
|
8 |
-
</head>
|
9 |
-
<body>
|
10 |
-
<div id="cesiumContainer"></div>
|
11 |
-
<script>
|
12 |
-
// Your access token can be found at: https://cesium.com/ion/tokens.
|
13 |
-
// Replace `your_access_token` with your Cesium ion access token.
|
14 |
-
|
15 |
-
Cesium.Ion.defaultAccessToken = 'your_access_token';
|
16 |
-
|
17 |
-
// Initialize the Cesium Viewer in the HTML element with the `cesiumContainer` ID.
|
18 |
-
const viewer = new Cesium.Viewer('cesiumContainer', {
|
19 |
-
terrainProvider: Cesium.createWorldTerrain()
|
20 |
-
});
|
21 |
-
// Add Cesium OSM Buildings, a global 3D buildings layer.
|
22 |
-
const buildingTileset = viewer.scene.primitives.add(Cesium.createOsmBuildings());
|
23 |
-
// Fly the camera to San Francisco at the given longitude, latitude, and height.
|
24 |
-
viewer.camera.flyTo({
|
25 |
-
destination : Cesium.Cartesian3.fromDegrees(-122.4175, 37.655, 400),
|
26 |
-
orientation : {
|
27 |
-
heading : Cesium.Math.toRadians(0.0),
|
28 |
-
pitch : Cesium.Math.toRadians(-15.0),
|
29 |
-
}
|
30 |
-
});
|
31 |
-
</script>
|
32 |
-
</div>
|
33 |
-
</body>
|
34 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,37 +0,0 @@
|
|
1 |
-
Name,Label,Description
|
2 |
-
median_listing_price,Median Listing Price,The median listing price within the specified geography during the specified month.
|
3 |
-
median_listing_price_mm,Median Listing Price M/M,The percentage change in the median listing price from the previous month.
|
4 |
-
median_listing_price_yy,Median Listing Price Y/Y,The percentage change in the median listing price from the same month in the previous year.
|
5 |
-
active_listing_count,Active Listing Count,"The count of active listings within the specified geography during the specified month. The active listing count tracks the number of for sale properties on the market, excluding pending listings where a pending status is available. This is a snapshot measure of how many active listings can be expected on any given day of the specified month."
|
6 |
-
active_listing_count_mm,Active Listing Count M/M,The percentage change in the active listing count from the previous month.
|
7 |
-
active_listing_count_yy,Active Listing Count Y/Y,The percentage change in the active listing count from the same month in the previous year.
|
8 |
-
median_days_on_market,Days on Market,The median number of days property listings spend on the market within the specified geography during the specified month. Time spent on the market is defined as the time between the initial listing of a property and either its closing date or the date it is taken off the market.
|
9 |
-
median_days_on_market_mm,Days on Market M/M,The percentage change in the median days on market from the previous month.
|
10 |
-
median_days_on_market_yy,Days on Market Y/Y,The percentage change in the median days on market from the same month in the previous year.
|
11 |
-
new_listing_count,New Listing Count,The count of new listings added to the market within the specified geography. The new listing count represents a typical weekβs worth of new listings in a given month. The new listing count can be multiplied by the number of weeks in a month to produce a monthly new listing count.
|
12 |
-
new_listing_count_mm,New Listing Count M/M,The percentage change in the new listing count from the previous month.
|
13 |
-
new_listing_count_yy,New Listing Count Y/Y,The percentage change in the new listing count from the same month in the previous year.
|
14 |
-
price_increased_count,Price Increase Count,The count of listings which have had their price increased within the specified geography. The price increase count represents a typical weekβs worth of listings which have had their price increased in a given month. The price increase count can be multiplied by the number of weeks in a month to produce a monthly price increase count.
|
15 |
-
price_increased_count_mm,Price Increase Count M/M,The percentage change in the price increase count from the previous month.
|
16 |
-
price_increased_count_yy,Price Increase Count Y/Y,The percentage change in the price increase count from the same month in the previous year.
|
17 |
-
price_reduced_count,Price Decrease Count,The count of listings which have had their price reduced within the specified geography. The price decrease count represents a typical weekβs worth of listings which have had their price reduced in a given month. The price decrease count can be multiplied by the number of weeks in a month to produce a monthly price decrease count.
|
18 |
-
price_reduced_count_mm,Price Decrease Count M/M,The percentage change in the price decrease count from the previous month.
|
19 |
-
price_reduced_count_yy,Price Decrease Count Y/Y,The percentage change in the price decrease count from the same month in the previous year.
|
20 |
-
pending_listing_count,Pending Listing Count,"The count of pending listings within the specified geography during the specified month, if a pending definition is available for that geography. This is a snapshot measure of how many pending listings can be expected on any given day of the specified month."
|
21 |
-
pending_listing_count_mm,Pending Listing Count M/M,The percentage change in the pending listing count from the previous month.
|
22 |
-
pending_listing_count_yy,Pending Listing Count Y/Y,The percentage change in the pending listing count from the same month in the previous year.
|
23 |
-
median_listing_price_per_square_foot,Median List Price Per Sqft,The median listing price per square foot within the specified geography during the specified month.
|
24 |
-
median_listing_price_per_square_foot_mm,Median List Price Per Sqft M/M,The percentage change in the median listing price per square foot from the previous month.
|
25 |
-
median_listing_price_per_square_foot_yy,Median List Price Per Sqft Y/Y,The percentage change in the median listing price per square foot from the same month in the previous year.
|
26 |
-
median_square_feet,Median Listing Sqft,The median listing square feet within the specified geography during the specified month.
|
27 |
-
median_square_feet_mm,Median Listing Sqft M/M,The percentage change in the median listing square feet from the previous month.
|
28 |
-
median_square_feet_yy,Median Listing Sqft Y/Y,The percentage change in the median listing square feet from the same month in the previous year.
|
29 |
-
average_listing_price,Avg Listing Price,The average listing price within the specified geography during the specified month.
|
30 |
-
average_listing_price_mm,Avg Listing Price M/M,The percentage change in the average listing price from the previous month.
|
31 |
-
average_listing_price_yy,Avg Listing Price Y/Y,The percentage change in the average listing price from the same month in the previous year.
|
32 |
-
total_listing_count,Total Listing Count,The total of both active listings and pending listings within the specified geography during the specified month. This is a snapshot measure of how many total listings can be expected on any given day of the specified month.
|
33 |
-
total_listing_count_mm,Total Listing Count M/M,The percentage change in the total listing count from the previous month.
|
34 |
-
total_listing_count_yy,Total Listing Count Y/Y,The percentage change in the total listing count from the same month in the previous year.
|
35 |
-
pending_ratio,Pending Ratio,The ratio of the pending listing count to the active listing count within the specified geography during the specified month.
|
36 |
-
pending_ratio_mm,Pending Ratio M/M,The change in the pending ratio from the previous month.
|
37 |
-
pending_ratio_yy,Pending Ratio Y/Y,The change in the pending ratio from the same month in the previous year.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,51 +0,0 @@
|
|
1 |
-
Name URL
|
2 |
-
Ordnance Survey - Air Photos, 1944-1950 - 1:10,560 https://geo.nls.uk/maps/air-photos/{z}/{x}/{y}.png
|
3 |
-
Ordnance Survey - Six Inch Scotland, 1843-1882 - 1:10,560 https://mapseries-tilesets.s3.amazonaws.com/os/6inchfirst/{z}/{x}/{y}.png
|
4 |
-
War Office, Great Britain 1:25,000. GSGS 3906, 1940-43 https://mapseries-tilesets.s3.amazonaws.com/gsgs3906/{z}/{x}/{y}.png
|
5 |
-
Roy - Roy Highlands, 1747-1752 - 1:36000 https://mapseries-tilesets.s3.amazonaws.com/roy/highlands/{z}/{x}/{y}.png
|
6 |
-
Roy - Roy Lowlands, 1752-1755 - 1:36000 https://mapseries-tilesets.s3.amazonaws.com/roy/lowlands/{z}/{x}/{y}.png
|
7 |
-
Great Britain - OS 1:10,560, 1949-1970 https://mapseries-tilesets.s3.amazonaws.com/os/britain10knatgrid/{z}/{x}/{y}.png
|
8 |
-
Great Britain - Bartholomew Half Inch, 1897-1907 https://mapseries-tilesets.s3.amazonaws.com/bartholomew_great_britain/{z}/{x}/{y}.png
|
9 |
-
OS 25 inch, 1892-1914 - Scotland South https://mapseries-tilesets.s3.amazonaws.com/25_inch/scotland_1/{z}/{x}/{y}.png
|
10 |
-
OS 25 inch, 1892-1914 - Scotland North https://mapseries-tilesets.s3.amazonaws.com/25_inch/scotland_2/{z}/{x}/{y}.png
|
11 |
-
OS 25 inch, 1892-1914 - Bedfordshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/bedfordshire/{z}/{x}/{y}.png
|
12 |
-
OS 25 inch, 1892-1914 - Berkshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/berkshire/{z}/{x}/{y}.png
|
13 |
-
OS 25 inch, 1892-1914 - Buckinghamshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/buckingham/{z}/{x}/{y}.png
|
14 |
-
OS 25 inch, 1892-1914 - Cambridgeshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/cambridge/{z}/{x}/{y}.png
|
15 |
-
OS 25 inch, 1892-1914 - Cheshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/cheshire/{z}/{x}/{y}.png
|
16 |
-
OS 25 inch, 1892-1914 - Cornwall https://mapseries-tilesets.s3.amazonaws.com/25_inch/cornwall/{z}/{x}/{y}.png
|
17 |
-
OS 25 inch, 1892-1914 - Cumberland https://mapseries-tilesets.s3.amazonaws.com/25_inch/cumberland/{z}/{x}/{y}.png
|
18 |
-
OS 25 inch, 1892-1914 - Devon https://mapseries-tilesets.s3.amazonaws.com/25_inch/devon/{z}/{x}/{y}.png
|
19 |
-
OS 25 inch, 1892-1914 - Dorset https://mapseries-tilesets.s3.amazonaws.com/25_inch/dorset/{z}/{x}/{y}.png
|
20 |
-
OS 25 inch, 1892-1914 - Durham https://mapseries-tilesets.s3.amazonaws.com/25_inch/durham/{z}/{x}/{y}.png
|
21 |
-
OS 25 inch, 1892-1914 - Essex https://mapseries-tilesets.s3.amazonaws.com/25_inch/essex/{z}/{x}/{y}.png
|
22 |
-
OS 25 inch, 1892-1914 - Gloucestershire https://mapseries-tilesets.s3.amazonaws.com/25_inch/gloucestershire/{z}/{x}/{y}.png
|
23 |
-
OS 25 inch, 1892-1914 - Hampshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/hampshire/{z}/{x}/{y}.png
|
24 |
-
OS 25 inch, 1892-1914 - Herefordshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/herefordshire/{z}/{x}/{y}.png
|
25 |
-
OS 25 inch, 1892-1914 - Hertfordshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/hertfordshire/{z}/{x}/{y}.png
|
26 |
-
OS 25 inch, 1892-1914 - Huntingdon https://mapseries-tilesets.s3.amazonaws.com/25_inch/huntingdon/{z}/{x}/{y}.png
|
27 |
-
OS 25 inch, 1892-1914 - Kent https://mapseries-tilesets.s3.amazonaws.com/25_inch/kent/{z}/{x}/{y}.png
|
28 |
-
OS 25 inch, 1892-1914 - Lancashire https://mapseries-tilesets.s3.amazonaws.com/25_inch/lancashire/{z}/{x}/{y}.png
|
29 |
-
OS 25 inch, 1892-1914 - Leicestershire https://mapseries-tilesets.s3.amazonaws.com/25_inch/leicestershire/{z}/{x}/{y}.png
|
30 |
-
OS 25 inch, 1892-1914 - Lincolnshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/lincolnshire/{z}/{x}/{y}.png
|
31 |
-
OS 25 inch, 1892-1914 - London https://mapseries-tilesets.s3.amazonaws.com/25_inch/london/{z}/{x}/{y}.png
|
32 |
-
OS 25 inch, 1892-1914 - Middlesex https://mapseries-tilesets.s3.amazonaws.com/25_inch/middlesex/{z}/{x}/{y}.png
|
33 |
-
OS 25 inch, 1892-1914 - Norfolk https://mapseries-tilesets.s3.amazonaws.com/25_inch/norfolk/{z}/{x}/{y}.png
|
34 |
-
OS 25 inch, 1892-1914 - Northamptonshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/northampton/{z}/{x}/{y}.png
|
35 |
-
OS 25 inch, 1892-1914 - Northumberland https://mapseries-tilesets.s3.amazonaws.com/25_inch/northumberland/{z}/{x}/{y}.png
|
36 |
-
OS 25 inch, 1892-1914 - Nottinghamshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/nottinghamshire/{z}/{x}/{y}.png
|
37 |
-
OS 25 inch, 1892-1914 - Oxford https://mapseries-tilesets.s3.amazonaws.com/25_inch/oxford/{z}/{x}/{y}.png
|
38 |
-
OS 25 inch, 1892-1914 - Rutland https://mapseries-tilesets.s3.amazonaws.com/25_inch/rutland/{z}/{x}/{y}.png
|
39 |
-
OS 25 inch, 1892-1914 - Shropshire / Derbyshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/Shrop_Derby/{z}/{x}/{y}.png
|
40 |
-
OS 25 inch, 1892-1914 - Somerset https://mapseries-tilesets.s3.amazonaws.com/25_inch/somerset/{z}/{x}/{y}.png
|
41 |
-
OS 25 inch, 1892-1914 - Stafford https://mapseries-tilesets.s3.amazonaws.com/25_inch/stafford/{z}/{x}/{y}.png
|
42 |
-
OS 25 inch, 1892-1914 - Suffolk https://mapseries-tilesets.s3.amazonaws.com/25_inch/suffolk/{z}/{x}/{y}.png
|
43 |
-
OS 25 inch, 1892-1914 - Surrey https://mapseries-tilesets.s3.amazonaws.com/25_inch/surrey/{z}/{x}/{y}.png
|
44 |
-
OS 25 inch, 1892-1914 - Sussex https://mapseries-tilesets.s3.amazonaws.com/25_inch/sussex/{z}/{x}/{y}.png
|
45 |
-
OS 25 inch, 1892-1914 - Wales https://mapseries-tilesets.s3.amazonaws.com/25_inch/wales/{z}/{x}/{y}.png
|
46 |
-
OS 25 inch, 1892-1914 - Warwick https://mapseries-tilesets.s3.amazonaws.com/25_inch/warwick/{z}/{x}/{y}.png
|
47 |
-
OS 25 inch, 1892-1914 - Westmorland https://mapseries-tilesets.s3.amazonaws.com/25_inch/westmorland/{z}/{x}/{y}.png
|
48 |
-
OS 25 inch, 1892-1914 - Wiltshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/wiltshire2nd/{z}/{x}/{y}.png
|
49 |
-
OS 25 inch, 1892-1914 - Worcestershire https://mapseries-tilesets.s3.amazonaws.com/25_inch/Worcestershire/{z}/{x}/{y}.png
|
50 |
-
OS 25 inch, 1892-1914 - Yorkshire https://mapseries-tilesets.s3.amazonaws.com/25_inch/yorkshire/{z}/{x}/{y}.png
|
51 |
-
OS 25 inch, 1892-1914 'Holes' (fills gaps in series) https://geo.nls.uk/mapdata3/os/25_inch_holes_england/{z}/{x}/{y}.png
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The diff for this file is too large to render.
See raw diff
|
|
The diff for this file is too large to render.
See raw diff
|
|
The diff for this file is too large to render.
See raw diff
|
|
The diff for this file is too large to render.
See raw diff
|
|
@@ -1,17 +0,0 @@
|
|
1 |
-
name: geo
|
2 |
-
channels:
|
3 |
-
- conda-forge
|
4 |
-
dependencies:
|
5 |
-
- gdal=3.4.3
|
6 |
-
- pip
|
7 |
-
- pip:
|
8 |
-
- geopandas
|
9 |
-
- keplergl
|
10 |
-
- streamlit
|
11 |
-
- localtileserver
|
12 |
-
- palettable
|
13 |
-
- streamlit-folium
|
14 |
-
- streamlit-keplergl
|
15 |
-
- streamlit-bokeh-events
|
16 |
-
- git+https://github.com/giswqs/leafmap
|
17 |
-
- git+https://github.com/giswqs/geemap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,39 +0,0 @@
|
|
1 |
-
<!DOCTYPE html>
|
2 |
-
<html>
|
3 |
-
<head>
|
4 |
-
<title>Streamlit for Geospatial</title>
|
5 |
-
<style type="text/css">
|
6 |
-
html {
|
7 |
-
overflow: auto;
|
8 |
-
}
|
9 |
-
html,
|
10 |
-
body,
|
11 |
-
div,
|
12 |
-
iframe {
|
13 |
-
margin: 0px;
|
14 |
-
padding: 0px;
|
15 |
-
height: 100%;
|
16 |
-
border: none;
|
17 |
-
}
|
18 |
-
iframe {
|
19 |
-
display: block;
|
20 |
-
width: 100%;
|
21 |
-
border: none;
|
22 |
-
overflow-y: auto;
|
23 |
-
overflow-x: hidden;
|
24 |
-
}
|
25 |
-
</style>
|
26 |
-
</head>
|
27 |
-
<body>
|
28 |
-
<iframe
|
29 |
-
src="https://share.streamlit.io/giswqs/streamlit-geospatial/app.py"
|
30 |
-
frameborder="0"
|
31 |
-
marginheight="0"
|
32 |
-
marginwidth="0"
|
33 |
-
width="100%"
|
34 |
-
height="100%"
|
35 |
-
scrolling="auto"
|
36 |
-
>
|
37 |
-
</iframe>
|
38 |
-
</body>
|
39 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,75 +0,0 @@
|
|
1 |
-
"""Frameworks for running multiple Streamlit applications as a single app.
|
2 |
-
"""
|
3 |
-
import streamlit as st
|
4 |
-
|
5 |
-
# app_state = st.experimental_get_query_params()
|
6 |
-
# app_state = {k: v[0] if isinstance(v, list) else v for k, v in app_state.items()} # fetch the first item in each query string as we don't have multiple values for each query string key in this example
|
7 |
-
|
8 |
-
|
9 |
-
class MultiApp:
|
10 |
-
"""Framework for combining multiple streamlit applications.
|
11 |
-
Usage:
|
12 |
-
def foo():
|
13 |
-
st.title("Hello Foo")
|
14 |
-
def bar():
|
15 |
-
st.title("Hello Bar")
|
16 |
-
app = MultiApp()
|
17 |
-
app.add_app("Foo", foo)
|
18 |
-
app.add_app("Bar", bar)
|
19 |
-
app.run()
|
20 |
-
It is also possible keep each application in a separate file.
|
21 |
-
import foo
|
22 |
-
import bar
|
23 |
-
app = MultiApp()
|
24 |
-
app.add_app("Foo", foo.app)
|
25 |
-
app.add_app("Bar", bar.app)
|
26 |
-
app.run()
|
27 |
-
"""
|
28 |
-
|
29 |
-
def __init__(self):
|
30 |
-
self.apps = []
|
31 |
-
|
32 |
-
def add_app(self, title, func):
|
33 |
-
"""Adds a new application.
|
34 |
-
Parameters
|
35 |
-
----------
|
36 |
-
func:
|
37 |
-
the python function to render this app.
|
38 |
-
title:
|
39 |
-
title of the app. Appears in the dropdown in the sidebar.
|
40 |
-
"""
|
41 |
-
self.apps.append({"title": title, "function": func})
|
42 |
-
|
43 |
-
def run(self):
|
44 |
-
app_state = st.experimental_get_query_params()
|
45 |
-
app_state = {
|
46 |
-
k: v[0] if isinstance(v, list) else v for k, v in app_state.items()
|
47 |
-
} # fetch the first item in each query string as we don't have multiple values for each query string key in this example
|
48 |
-
|
49 |
-
# st.write('before', app_state)
|
50 |
-
|
51 |
-
titles = [a["title"] for a in self.apps]
|
52 |
-
functions = [a["function"] for a in self.apps]
|
53 |
-
default_radio = titles.index(app_state["page"]) if "page" in app_state else 0
|
54 |
-
|
55 |
-
st.sidebar.title("Navigation")
|
56 |
-
|
57 |
-
title = st.sidebar.radio("Go To", titles, index=default_radio, key="radio")
|
58 |
-
|
59 |
-
app_state["page"] = st.session_state.radio
|
60 |
-
# st.write('after', app_state)
|
61 |
-
|
62 |
-
st.experimental_set_query_params(**app_state)
|
63 |
-
# st.experimental_set_query_params(**st.session_state.to_dict())
|
64 |
-
functions[titles.index(title)]()
|
65 |
-
|
66 |
-
st.sidebar.title("Contribute")
|
67 |
-
st.sidebar.info(
|
68 |
-
"Welcome, [source code](https://github.com/giswqs/streamlit-geospatial). "
|
69 |
-
)
|
70 |
-
st.sidebar.title("About")
|
71 |
-
st.sidebar.info(
|
72 |
-
"""
|
73 |
-
This web [app](https://share.streamlit.io/giswqs/streamlit-geospatial/app.py) is developed by Mapaction
|
74 |
-
"""
|
75 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,9 +0,0 @@
|
|
1 |
-
ffmpeg
|
2 |
-
gifsicle
|
3 |
-
build-essential
|
4 |
-
python3-dev
|
5 |
-
gdal-bin
|
6 |
-
libgdal-dev
|
7 |
-
libproj-dev
|
8 |
-
libgeos-dev
|
9 |
-
proj-bin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Binary file (6.15 kB)
|
|
@@ -1,144 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import streamlit as st
|
3 |
-
import geemap.foliumap as geemap
|
4 |
-
|
5 |
-
st.set_page_config(layout="wide")
|
6 |
-
|
7 |
-
st.sidebar.title("About")
|
8 |
-
st.sidebar.info(
|
9 |
-
"""
|
10 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
11 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
12 |
-
"""
|
13 |
-
)
|
14 |
-
|
15 |
-
st.sidebar.title("Contact")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Qiusheng Wu: <https://wetlands.io>
|
19 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
def nlcd():
|
25 |
-
|
26 |
-
# st.header("National Land Cover Database (NLCD)")
|
27 |
-
|
28 |
-
row1_col1, row1_col2 = st.columns([3, 1])
|
29 |
-
width = 950
|
30 |
-
height = 600
|
31 |
-
|
32 |
-
Map = geemap.Map(center=[40, -100], zoom=4)
|
33 |
-
|
34 |
-
# Select the seven NLCD epoches after 2000.
|
35 |
-
years = ["2001", "2004", "2006", "2008", "2011", "2013", "2016", "2019"]
|
36 |
-
|
37 |
-
# Get an NLCD image by year.
|
38 |
-
def getNLCD(year):
|
39 |
-
# Import the NLCD collection.
|
40 |
-
dataset = ee.ImageCollection("USGS/NLCD_RELEASES/2019_REL/NLCD")
|
41 |
-
|
42 |
-
# Filter the collection by year.
|
43 |
-
nlcd = dataset.filter(ee.Filter.eq("system:index", year)).first()
|
44 |
-
|
45 |
-
# Select the land cover band.
|
46 |
-
landcover = nlcd.select("landcover")
|
47 |
-
return landcover
|
48 |
-
|
49 |
-
with row1_col2:
|
50 |
-
selected_year = st.multiselect("Select a year", years)
|
51 |
-
add_legend = st.checkbox("Show legend")
|
52 |
-
|
53 |
-
if selected_year:
|
54 |
-
for year in selected_year:
|
55 |
-
Map.addLayer(getNLCD(year), {}, "NLCD " + year)
|
56 |
-
|
57 |
-
if add_legend:
|
58 |
-
Map.add_legend(
|
59 |
-
legend_title="NLCD Land Cover Classification", builtin_legend="NLCD"
|
60 |
-
)
|
61 |
-
with row1_col1:
|
62 |
-
Map.to_streamlit(width=width, height=height)
|
63 |
-
|
64 |
-
else:
|
65 |
-
with row1_col1:
|
66 |
-
Map.to_streamlit(width=width, height=height)
|
67 |
-
|
68 |
-
|
69 |
-
def search_data():
|
70 |
-
|
71 |
-
# st.header("Search Earth Engine Data Catalog")
|
72 |
-
|
73 |
-
Map = geemap.Map()
|
74 |
-
|
75 |
-
if "ee_assets" not in st.session_state:
|
76 |
-
st.session_state["ee_assets"] = None
|
77 |
-
if "asset_titles" not in st.session_state:
|
78 |
-
st.session_state["asset_titles"] = None
|
79 |
-
|
80 |
-
col1, col2 = st.columns([2, 1])
|
81 |
-
|
82 |
-
dataset = None
|
83 |
-
with col2:
|
84 |
-
keyword = st.text_input("Enter a keyword to search (e.g., elevation)", "")
|
85 |
-
if keyword:
|
86 |
-
ee_assets = geemap.search_ee_data(keyword)
|
87 |
-
asset_titles = [x["title"] for x in ee_assets]
|
88 |
-
dataset = st.selectbox("Select a dataset", asset_titles)
|
89 |
-
if len(ee_assets) > 0:
|
90 |
-
st.session_state["ee_assets"] = ee_assets
|
91 |
-
st.session_state["asset_titles"] = asset_titles
|
92 |
-
|
93 |
-
if dataset is not None:
|
94 |
-
with st.expander("Show dataset details", True):
|
95 |
-
index = asset_titles.index(dataset)
|
96 |
-
html = geemap.ee_data_html(st.session_state["ee_assets"][index])
|
97 |
-
st.markdown(html, True)
|
98 |
-
|
99 |
-
ee_id = ee_assets[index]["ee_id_snippet"]
|
100 |
-
uid = ee_assets[index]["uid"]
|
101 |
-
st.markdown(f"""**Earth Engine Snippet:** `{ee_id}`""")
|
102 |
-
|
103 |
-
vis_params = st.text_input(
|
104 |
-
"Enter visualization parameters as a dictionary", {}
|
105 |
-
)
|
106 |
-
layer_name = st.text_input("Enter a layer name", uid)
|
107 |
-
button = st.button("Add dataset to map")
|
108 |
-
if button:
|
109 |
-
vis = {}
|
110 |
-
try:
|
111 |
-
if vis_params.strip() == "":
|
112 |
-
# st.error("Please enter visualization parameters")
|
113 |
-
vis_params = "{}"
|
114 |
-
vis = eval(vis_params)
|
115 |
-
if not isinstance(vis, dict):
|
116 |
-
st.error("Visualization parameters must be a dictionary")
|
117 |
-
try:
|
118 |
-
Map.addLayer(eval(ee_id), vis, layer_name)
|
119 |
-
except Exception as e:
|
120 |
-
st.error(f"Error adding layer: {e}")
|
121 |
-
except Exception as e:
|
122 |
-
st.error(f"Invalid visualization parameters: {e}")
|
123 |
-
|
124 |
-
with col1:
|
125 |
-
Map.to_streamlit()
|
126 |
-
else:
|
127 |
-
with col1:
|
128 |
-
Map.to_streamlit()
|
129 |
-
|
130 |
-
|
131 |
-
def app():
|
132 |
-
st.title("Earth Engine Data Catalog")
|
133 |
-
|
134 |
-
apps = ["Search Earth Engine Data Catalog", "National Land Cover Database (NLCD)"]
|
135 |
-
|
136 |
-
selected_app = st.selectbox("Select an app", apps)
|
137 |
-
|
138 |
-
if selected_app == "National Land Cover Database (NLCD)":
|
139 |
-
nlcd()
|
140 |
-
elif selected_app == "Search Earth Engine Data Catalog":
|
141 |
-
search_data()
|
142 |
-
|
143 |
-
|
144 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,110 +0,0 @@
|
|
1 |
-
import folium
|
2 |
-
import pandas as pd
|
3 |
-
import streamlit as st
|
4 |
-
import leafmap.foliumap as leafmap
|
5 |
-
import folium.plugins as plugins
|
6 |
-
|
7 |
-
st.set_page_config(layout="wide")
|
8 |
-
|
9 |
-
st.sidebar.title("About")
|
10 |
-
st.sidebar.info(
|
11 |
-
"""
|
12 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
13 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
14 |
-
"""
|
15 |
-
)
|
16 |
-
|
17 |
-
st.sidebar.title("Contact")
|
18 |
-
st.sidebar.info(
|
19 |
-
"""
|
20 |
-
Qiusheng Wu: <https://wetlands.io>
|
21 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
22 |
-
"""
|
23 |
-
)
|
24 |
-
|
25 |
-
st.title("National Library of Scotland XYZ Layers")
|
26 |
-
df = pd.read_csv("data/scotland_xyz.tsv", sep="\t")
|
27 |
-
basemaps = leafmap.basemaps
|
28 |
-
names = df["Name"].values.tolist() + list(basemaps.keys())
|
29 |
-
links = df["URL"].values.tolist() + list(basemaps.values())
|
30 |
-
|
31 |
-
col1, col2, col3, col4, col5, col6, col7 = st.columns([3, 3, 1, 1, 1, 1.5, 1.5])
|
32 |
-
with col1:
|
33 |
-
left_name = st.selectbox(
|
34 |
-
"Select the left layer",
|
35 |
-
names,
|
36 |
-
index=names.index("Great Britain - Bartholomew Half Inch, 1897-1907"),
|
37 |
-
)
|
38 |
-
|
39 |
-
with col2:
|
40 |
-
right_name = st.selectbox(
|
41 |
-
"Select the right layer",
|
42 |
-
names,
|
43 |
-
index=names.index("HYBRID"),
|
44 |
-
)
|
45 |
-
|
46 |
-
with col3:
|
47 |
-
# lat = st.slider('Latitude', -90.0, 90.0, 55.68, step=0.01)
|
48 |
-
lat = st.text_input("Latitude", " 55.68")
|
49 |
-
|
50 |
-
with col4:
|
51 |
-
# lon = st.slider('Longitude', -180.0, 180.0, -2.98, step=0.01)
|
52 |
-
lon = st.text_input("Longitude", "-2.98")
|
53 |
-
|
54 |
-
with col5:
|
55 |
-
# zoom = st.slider('Zoom', 1, 24, 6, step=1)
|
56 |
-
zoom = st.text_input("Zoom", "6")
|
57 |
-
|
58 |
-
with col6:
|
59 |
-
checkbox = st.checkbox("Add OS 25 inch")
|
60 |
-
|
61 |
-
# with col7:
|
62 |
-
with st.expander("Acknowledgements"):
|
63 |
-
markdown = """
|
64 |
-
The map tile access is by kind arrangement of the National Library of Scotland on the understanding that re-use is for personal purposes. They host most of the map layers except these:
|
65 |
-
- The Roy Maps are owned by the British Library.
|
66 |
-
- The Great Britain β OS maps 1:25,000, 1937-61 and One Inch 7th series, 1955-61 are hosted by MapTiler.
|
67 |
-
|
68 |
-
If you wish you use these layers within a website, or for a commercial or public purpose, please view the [National Library of Scotland Historic Maps Subscription API](https://maps.nls.uk/projects/subscription-api/) or contact them at [email protected].
|
69 |
-
"""
|
70 |
-
st.markdown(markdown, unsafe_allow_html=True)
|
71 |
-
|
72 |
-
m = leafmap.Map(
|
73 |
-
center=[float(lat), float(lon)],
|
74 |
-
zoom=int(zoom),
|
75 |
-
locate_control=True,
|
76 |
-
draw_control=False,
|
77 |
-
measure_control=False,
|
78 |
-
)
|
79 |
-
measure = plugins.MeasureControl(position="bottomleft", active_color="orange")
|
80 |
-
measure.add_to(m)
|
81 |
-
|
82 |
-
if left_name in basemaps:
|
83 |
-
left_layer = basemaps[left_name]
|
84 |
-
else:
|
85 |
-
left_layer = folium.TileLayer(
|
86 |
-
tiles=links[names.index(left_name)],
|
87 |
-
name=left_name,
|
88 |
-
attr="National Library of Scotland",
|
89 |
-
overlay=True,
|
90 |
-
)
|
91 |
-
|
92 |
-
if right_name in basemaps:
|
93 |
-
right_layer = basemaps[right_name]
|
94 |
-
else:
|
95 |
-
right_layer = folium.TileLayer(
|
96 |
-
tiles=links[names.index(right_name)],
|
97 |
-
name=right_name,
|
98 |
-
attr="National Library of Scotland",
|
99 |
-
overlay=True,
|
100 |
-
)
|
101 |
-
|
102 |
-
if checkbox:
|
103 |
-
for index, name in enumerate(names):
|
104 |
-
if "OS 25 inch" in name:
|
105 |
-
m.add_tile_layer(
|
106 |
-
links[index], name, attribution="National Library of Scotland"
|
107 |
-
)
|
108 |
-
|
109 |
-
m.split_map(left_layer, right_layer)
|
110 |
-
m.to_streamlit(height=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,113 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import ee
|
3 |
-
import streamlit as st
|
4 |
-
import geemap.foliumap as geemap
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
st.sidebar.title("About")
|
9 |
-
st.sidebar.info(
|
10 |
-
"""
|
11 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
12 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
13 |
-
"""
|
14 |
-
)
|
15 |
-
|
16 |
-
st.sidebar.title("Contact")
|
17 |
-
st.sidebar.info(
|
18 |
-
"""
|
19 |
-
Qiusheng Wu: <https://wetlands.io>
|
20 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
21 |
-
"""
|
22 |
-
)
|
23 |
-
|
24 |
-
st.title("Comparing Global Land Cover Maps")
|
25 |
-
|
26 |
-
col1, col2 = st.columns([4, 1])
|
27 |
-
|
28 |
-
Map = geemap.Map()
|
29 |
-
Map.add_basemap("ESA WorldCover 2020 S2 FCC")
|
30 |
-
Map.add_basemap("ESA WorldCover 2020 S2 TCC")
|
31 |
-
Map.add_basemap("HYBRID")
|
32 |
-
|
33 |
-
esa = ee.ImageCollection("ESA/WorldCover/v100").first()
|
34 |
-
esa_vis = {"bands": ["Map"]}
|
35 |
-
|
36 |
-
|
37 |
-
esri = ee.ImageCollection(
|
38 |
-
"projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m"
|
39 |
-
).mosaic()
|
40 |
-
esri_vis = {
|
41 |
-
"min": 1,
|
42 |
-
"max": 10,
|
43 |
-
"palette": [
|
44 |
-
"#1A5BAB",
|
45 |
-
"#358221",
|
46 |
-
"#A7D282",
|
47 |
-
"#87D19E",
|
48 |
-
"#FFDB5C",
|
49 |
-
"#EECFA8",
|
50 |
-
"#ED022A",
|
51 |
-
"#EDE9E4",
|
52 |
-
"#F2FAFF",
|
53 |
-
"#C8C8C8",
|
54 |
-
],
|
55 |
-
}
|
56 |
-
|
57 |
-
|
58 |
-
markdown = """
|
59 |
-
- [Dynamic World Land Cover](https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1?hl=en)
|
60 |
-
- [ESA Global Land Cover](https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100)
|
61 |
-
- [ESRI Global Land Cover](https://samapriya.github.io/awesome-gee-community-datasets/projects/esrilc2020)
|
62 |
-
|
63 |
-
"""
|
64 |
-
|
65 |
-
with col2:
|
66 |
-
|
67 |
-
longitude = st.number_input("Longitude", -180.0, 180.0, -89.3998)
|
68 |
-
latitude = st.number_input("Latitude", -90.0, 90.0, 43.0886)
|
69 |
-
zoom = st.number_input("Zoom", 0, 20, 11)
|
70 |
-
|
71 |
-
Map.setCenter(longitude, latitude, zoom)
|
72 |
-
|
73 |
-
start = st.date_input("Start Date for Dynamic World", datetime.date(2020, 1, 1))
|
74 |
-
end = st.date_input("End Date for Dynamic World", datetime.date(2021, 1, 1))
|
75 |
-
|
76 |
-
start_date = start.strftime("%Y-%m-%d")
|
77 |
-
end_date = end.strftime("%Y-%m-%d")
|
78 |
-
|
79 |
-
region = ee.Geometry.BBox(-179, -89, 179, 89)
|
80 |
-
dw = geemap.dynamic_world(region, start_date, end_date, return_type="hillshade")
|
81 |
-
|
82 |
-
layers = {
|
83 |
-
"Dynamic World": geemap.ee_tile_layer(dw, {}, "Dynamic World Land Cover"),
|
84 |
-
"ESA Land Cover": geemap.ee_tile_layer(esa, esa_vis, "ESA Land Cover"),
|
85 |
-
"ESRI Land Cover": geemap.ee_tile_layer(esri, esri_vis, "ESRI Land Cover"),
|
86 |
-
}
|
87 |
-
|
88 |
-
options = list(layers.keys())
|
89 |
-
left = st.selectbox("Select a left layer", options, index=1)
|
90 |
-
right = st.selectbox("Select a right layer", options, index=0)
|
91 |
-
|
92 |
-
left_layer = layers[left]
|
93 |
-
right_layer = layers[right]
|
94 |
-
|
95 |
-
Map.split_map(left_layer, right_layer)
|
96 |
-
|
97 |
-
legend = st.selectbox("Select a legend", options, index=options.index(right))
|
98 |
-
if legend == "Dynamic World":
|
99 |
-
Map.add_legend(
|
100 |
-
title="Dynamic World Land Cover",
|
101 |
-
builtin_legend="Dynamic_World",
|
102 |
-
)
|
103 |
-
elif legend == "ESA Land Cover":
|
104 |
-
Map.add_legend(title="ESA Land Cover", builtin_legend="ESA_WorldCover")
|
105 |
-
elif legend == "ESRI Land Cover":
|
106 |
-
Map.add_legend(title="ESRI Land Cover", builtin_legend="ESRI_LandCover")
|
107 |
-
|
108 |
-
with st.expander("Data sources"):
|
109 |
-
st.markdown(markdown)
|
110 |
-
|
111 |
-
|
112 |
-
with col1:
|
113 |
-
Map.to_streamlit(height=750)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,1517 +0,0 @@
|
|
1 |
-
from sys import modules
|
2 |
-
import ee
|
3 |
-
import os
|
4 |
-
import datetime
|
5 |
-
import geopandas as gpd
|
6 |
-
import folium
|
7 |
-
import streamlit as st
|
8 |
-
import geemap.colormaps as cm
|
9 |
-
import geemap.foliumap as geemap
|
10 |
-
from datetime import date
|
11 |
-
from shapely.geometry import Polygon
|
12 |
-
|
13 |
-
st.set_page_config(layout="wide")
|
14 |
-
|
15 |
-
st.sidebar.title("About")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
19 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
st.sidebar.title("Contact")
|
24 |
-
st.sidebar.info(
|
25 |
-
"""
|
26 |
-
Qiusheng Wu: <https://wetlands.io>
|
27 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
28 |
-
"""
|
29 |
-
)
|
30 |
-
|
31 |
-
goes_rois = {
|
32 |
-
"Creek Fire, CA (2020-09-05)": {
|
33 |
-
"region": Polygon(
|
34 |
-
[
|
35 |
-
[-121.003418, 36.848857],
|
36 |
-
[-121.003418, 39.049052],
|
37 |
-
[-117.905273, 39.049052],
|
38 |
-
[-117.905273, 36.848857],
|
39 |
-
[-121.003418, 36.848857],
|
40 |
-
]
|
41 |
-
),
|
42 |
-
"start_time": "2020-09-05T15:00:00",
|
43 |
-
"end_time": "2020-09-06T02:00:00",
|
44 |
-
},
|
45 |
-
"Bomb Cyclone (2021-10-24)": {
|
46 |
-
"region": Polygon(
|
47 |
-
[
|
48 |
-
[-159.5954, 60.4088],
|
49 |
-
[-159.5954, 24.5178],
|
50 |
-
[-114.2438, 24.5178],
|
51 |
-
[-114.2438, 60.4088],
|
52 |
-
]
|
53 |
-
),
|
54 |
-
"start_time": "2021-10-24T14:00:00",
|
55 |
-
"end_time": "2021-10-25T01:00:00",
|
56 |
-
},
|
57 |
-
"Hunga Tonga Volcanic Eruption (2022-01-15)": {
|
58 |
-
"region": Polygon(
|
59 |
-
[
|
60 |
-
[-192.480469, -32.546813],
|
61 |
-
[-192.480469, -8.754795],
|
62 |
-
[-157.587891, -8.754795],
|
63 |
-
[-157.587891, -32.546813],
|
64 |
-
[-192.480469, -32.546813],
|
65 |
-
]
|
66 |
-
),
|
67 |
-
"start_time": "2022-01-15T03:00:00",
|
68 |
-
"end_time": "2022-01-15T07:00:00",
|
69 |
-
},
|
70 |
-
"Hunga Tonga Volcanic Eruption Closer Look (2022-01-15)": {
|
71 |
-
"region": Polygon(
|
72 |
-
[
|
73 |
-
[-178.901367, -22.958393],
|
74 |
-
[-178.901367, -17.85329],
|
75 |
-
[-171.452637, -17.85329],
|
76 |
-
[-171.452637, -22.958393],
|
77 |
-
[-178.901367, -22.958393],
|
78 |
-
]
|
79 |
-
),
|
80 |
-
"start_time": "2022-01-15T03:00:00",
|
81 |
-
"end_time": "2022-01-15T07:00:00",
|
82 |
-
},
|
83 |
-
}
|
84 |
-
|
85 |
-
|
86 |
-
landsat_rois = {
|
87 |
-
"Aral Sea": Polygon(
|
88 |
-
[
|
89 |
-
[57.667236, 43.834527],
|
90 |
-
[57.667236, 45.996962],
|
91 |
-
[61.12793, 45.996962],
|
92 |
-
[61.12793, 43.834527],
|
93 |
-
[57.667236, 43.834527],
|
94 |
-
]
|
95 |
-
),
|
96 |
-
"Dubai": Polygon(
|
97 |
-
[
|
98 |
-
[54.541626, 24.763044],
|
99 |
-
[54.541626, 25.427152],
|
100 |
-
[55.632019, 25.427152],
|
101 |
-
[55.632019, 24.763044],
|
102 |
-
[54.541626, 24.763044],
|
103 |
-
]
|
104 |
-
),
|
105 |
-
"Hong Kong International Airport": Polygon(
|
106 |
-
[
|
107 |
-
[113.825226, 22.198849],
|
108 |
-
[113.825226, 22.349758],
|
109 |
-
[114.085121, 22.349758],
|
110 |
-
[114.085121, 22.198849],
|
111 |
-
[113.825226, 22.198849],
|
112 |
-
]
|
113 |
-
),
|
114 |
-
"Las Vegas, NV": Polygon(
|
115 |
-
[
|
116 |
-
[-115.554199, 35.804449],
|
117 |
-
[-115.554199, 36.558188],
|
118 |
-
[-113.903503, 36.558188],
|
119 |
-
[-113.903503, 35.804449],
|
120 |
-
[-115.554199, 35.804449],
|
121 |
-
]
|
122 |
-
),
|
123 |
-
"Pucallpa, Peru": Polygon(
|
124 |
-
[
|
125 |
-
[-74.672699, -8.600032],
|
126 |
-
[-74.672699, -8.254983],
|
127 |
-
[-74.279938, -8.254983],
|
128 |
-
[-74.279938, -8.600032],
|
129 |
-
]
|
130 |
-
),
|
131 |
-
"Sierra Gorda, Chile": Polygon(
|
132 |
-
[
|
133 |
-
[-69.315491, -22.837104],
|
134 |
-
[-69.315491, -22.751488],
|
135 |
-
[-69.190006, -22.751488],
|
136 |
-
[-69.190006, -22.837104],
|
137 |
-
[-69.315491, -22.837104],
|
138 |
-
]
|
139 |
-
),
|
140 |
-
}
|
141 |
-
|
142 |
-
modis_rois = {
|
143 |
-
"World": Polygon(
|
144 |
-
[
|
145 |
-
[-171.210938, -57.136239],
|
146 |
-
[-171.210938, 79.997168],
|
147 |
-
[177.539063, 79.997168],
|
148 |
-
[177.539063, -57.136239],
|
149 |
-
[-171.210938, -57.136239],
|
150 |
-
]
|
151 |
-
),
|
152 |
-
"Africa": Polygon(
|
153 |
-
[
|
154 |
-
[-18.6983, 38.1446],
|
155 |
-
[-18.6983, -36.1630],
|
156 |
-
[52.2293, -36.1630],
|
157 |
-
[52.2293, 38.1446],
|
158 |
-
]
|
159 |
-
),
|
160 |
-
"USA": Polygon(
|
161 |
-
[
|
162 |
-
[-127.177734, 23.725012],
|
163 |
-
[-127.177734, 50.792047],
|
164 |
-
[-66.269531, 50.792047],
|
165 |
-
[-66.269531, 23.725012],
|
166 |
-
[-127.177734, 23.725012],
|
167 |
-
]
|
168 |
-
),
|
169 |
-
}
|
170 |
-
|
171 |
-
ocean_rois = {
|
172 |
-
"Gulf of Mexico": Polygon(
|
173 |
-
[
|
174 |
-
[-101.206055, 15.496032],
|
175 |
-
[-101.206055, 32.361403],
|
176 |
-
[-75.673828, 32.361403],
|
177 |
-
[-75.673828, 15.496032],
|
178 |
-
[-101.206055, 15.496032],
|
179 |
-
]
|
180 |
-
),
|
181 |
-
"North Atlantic Ocean": Polygon(
|
182 |
-
[
|
183 |
-
[-85.341797, 24.046464],
|
184 |
-
[-85.341797, 45.02695],
|
185 |
-
[-55.810547, 45.02695],
|
186 |
-
[-55.810547, 24.046464],
|
187 |
-
[-85.341797, 24.046464],
|
188 |
-
]
|
189 |
-
),
|
190 |
-
"World": Polygon(
|
191 |
-
[
|
192 |
-
[-171.210938, -57.136239],
|
193 |
-
[-171.210938, 79.997168],
|
194 |
-
[177.539063, 79.997168],
|
195 |
-
[177.539063, -57.136239],
|
196 |
-
[-171.210938, -57.136239],
|
197 |
-
]
|
198 |
-
),
|
199 |
-
}
|
200 |
-
|
201 |
-
|
202 |
-
@st.cache
|
203 |
-
def uploaded_file_to_gdf(data):
|
204 |
-
import tempfile
|
205 |
-
import os
|
206 |
-
import uuid
|
207 |
-
|
208 |
-
_, file_extension = os.path.splitext(data.name)
|
209 |
-
file_id = str(uuid.uuid4())
|
210 |
-
file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}")
|
211 |
-
|
212 |
-
with open(file_path, "wb") as file:
|
213 |
-
file.write(data.getbuffer())
|
214 |
-
|
215 |
-
if file_path.lower().endswith(".kml"):
|
216 |
-
gpd.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw"
|
217 |
-
gdf = gpd.read_file(file_path, driver="KML")
|
218 |
-
else:
|
219 |
-
gdf = gpd.read_file(file_path)
|
220 |
-
|
221 |
-
return gdf
|
222 |
-
|
223 |
-
|
224 |
-
def app():
|
225 |
-
|
226 |
-
today = date.today()
|
227 |
-
|
228 |
-
st.title("Create Satellite Timelapse")
|
229 |
-
|
230 |
-
st.markdown(
|
231 |
-
"""
|
232 |
-
An interactive web app for creating [Landsat](https://developers.google.com/earth-engine/datasets/catalog/landsat)/[GOES](https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16) timelapse for any location around the globe.
|
233 |
-
The app was built using [streamlit](https://streamlit.io), [geemap](https://geemap.org), and [Google Earth Engine](https://earthengine.google.com). For more info, check out my streamlit [blog post](https://blog.streamlit.io/creating-satellite-timelapse-with-streamlit-and-earth-engine).
|
234 |
-
"""
|
235 |
-
)
|
236 |
-
|
237 |
-
row1_col1, row1_col2 = st.columns([2, 1])
|
238 |
-
|
239 |
-
if st.session_state.get("zoom_level") is None:
|
240 |
-
st.session_state["zoom_level"] = 4
|
241 |
-
|
242 |
-
st.session_state["ee_asset_id"] = None
|
243 |
-
st.session_state["bands"] = None
|
244 |
-
st.session_state["palette"] = None
|
245 |
-
st.session_state["vis_params"] = None
|
246 |
-
|
247 |
-
with row1_col1:
|
248 |
-
m = geemap.Map(
|
249 |
-
basemap="HYBRID",
|
250 |
-
plugin_Draw=True,
|
251 |
-
Draw_export=True,
|
252 |
-
locate_control=True,
|
253 |
-
plugin_LatLngPopup=False,
|
254 |
-
)
|
255 |
-
m.add_basemap("ROADMAP")
|
256 |
-
|
257 |
-
with row1_col2:
|
258 |
-
|
259 |
-
keyword = st.text_input("Search for a location:", "")
|
260 |
-
if keyword:
|
261 |
-
locations = geemap.geocode(keyword)
|
262 |
-
if locations is not None and len(locations) > 0:
|
263 |
-
str_locations = [str(g)[1:-1] for g in locations]
|
264 |
-
location = st.selectbox("Select a location:", str_locations)
|
265 |
-
loc_index = str_locations.index(location)
|
266 |
-
selected_loc = locations[loc_index]
|
267 |
-
lat, lng = selected_loc.lat, selected_loc.lng
|
268 |
-
folium.Marker(location=[lat, lng], popup=location).add_to(m)
|
269 |
-
m.set_center(lng, lat, 12)
|
270 |
-
st.session_state["zoom_level"] = 12
|
271 |
-
|
272 |
-
collection = st.selectbox(
|
273 |
-
"Select a satellite image collection: ",
|
274 |
-
[
|
275 |
-
"Any Earth Engine ImageCollection",
|
276 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
277 |
-
"Sentinel-2 MSI Surface Reflectance",
|
278 |
-
"Geostationary Operational Environmental Satellites (GOES)",
|
279 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
280 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
281 |
-
"MODIS Ocean Color SMI",
|
282 |
-
"USDA National Agriculture Imagery Program (NAIP)",
|
283 |
-
],
|
284 |
-
index=1,
|
285 |
-
)
|
286 |
-
|
287 |
-
if collection in [
|
288 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
289 |
-
"Sentinel-2 MSI Surface Reflectance",
|
290 |
-
]:
|
291 |
-
roi_options = ["Uploaded GeoJSON"] + list(landsat_rois.keys())
|
292 |
-
|
293 |
-
elif collection == "Geostationary Operational Environmental Satellites (GOES)":
|
294 |
-
roi_options = ["Uploaded GeoJSON"] + list(goes_rois.keys())
|
295 |
-
|
296 |
-
elif collection in [
|
297 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
298 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
299 |
-
]:
|
300 |
-
roi_options = ["Uploaded GeoJSON"] + list(modis_rois.keys())
|
301 |
-
elif collection == "MODIS Ocean Color SMI":
|
302 |
-
roi_options = ["Uploaded GeoJSON"] + list(ocean_rois.keys())
|
303 |
-
else:
|
304 |
-
roi_options = ["Uploaded GeoJSON"]
|
305 |
-
|
306 |
-
if collection == "Any Earth Engine ImageCollection":
|
307 |
-
keyword = st.text_input("Enter a keyword to search (e.g., MODIS):", "")
|
308 |
-
if keyword:
|
309 |
-
|
310 |
-
assets = geemap.search_ee_data(keyword)
|
311 |
-
ee_assets = []
|
312 |
-
for asset in assets:
|
313 |
-
if asset["ee_id_snippet"].startswith("ee.ImageCollection"):
|
314 |
-
ee_assets.append(asset)
|
315 |
-
|
316 |
-
asset_titles = [x["title"] for x in ee_assets]
|
317 |
-
dataset = st.selectbox("Select a dataset:", asset_titles)
|
318 |
-
if len(ee_assets) > 0:
|
319 |
-
st.session_state["ee_assets"] = ee_assets
|
320 |
-
st.session_state["asset_titles"] = asset_titles
|
321 |
-
index = asset_titles.index(dataset)
|
322 |
-
ee_id = ee_assets[index]["id"]
|
323 |
-
else:
|
324 |
-
ee_id = ""
|
325 |
-
|
326 |
-
if dataset is not None:
|
327 |
-
with st.expander("Show dataset details", False):
|
328 |
-
index = asset_titles.index(dataset)
|
329 |
-
html = geemap.ee_data_html(st.session_state["ee_assets"][index])
|
330 |
-
st.markdown(html, True)
|
331 |
-
# elif collection == "MODIS Gap filled Land Surface Temperature Daily":
|
332 |
-
# ee_id = ""
|
333 |
-
else:
|
334 |
-
ee_id = ""
|
335 |
-
|
336 |
-
asset_id = st.text_input("Enter an ee.ImageCollection asset ID:", ee_id)
|
337 |
-
|
338 |
-
if asset_id:
|
339 |
-
with st.expander("Customize band combination and color palette", True):
|
340 |
-
try:
|
341 |
-
col = ee.ImageCollection.load(asset_id)
|
342 |
-
st.session_state["ee_asset_id"] = asset_id
|
343 |
-
except:
|
344 |
-
st.error("Invalid Earth Engine asset ID.")
|
345 |
-
st.session_state["ee_asset_id"] = None
|
346 |
-
return
|
347 |
-
|
348 |
-
img_bands = col.first().bandNames().getInfo()
|
349 |
-
if len(img_bands) >= 3:
|
350 |
-
default_bands = img_bands[:3][::-1]
|
351 |
-
else:
|
352 |
-
default_bands = img_bands[:]
|
353 |
-
bands = st.multiselect(
|
354 |
-
"Select one or three bands (RGB):", img_bands, default_bands
|
355 |
-
)
|
356 |
-
st.session_state["bands"] = bands
|
357 |
-
|
358 |
-
if len(bands) == 1:
|
359 |
-
palette_options = st.selectbox(
|
360 |
-
"Color palette",
|
361 |
-
cm.list_colormaps(),
|
362 |
-
index=2,
|
363 |
-
)
|
364 |
-
palette_values = cm.get_palette(palette_options, 15)
|
365 |
-
palette = st.text_area(
|
366 |
-
"Enter a custom palette:",
|
367 |
-
palette_values,
|
368 |
-
)
|
369 |
-
st.write(
|
370 |
-
cm.plot_colormap(cmap=palette_options, return_fig=True)
|
371 |
-
)
|
372 |
-
st.session_state["palette"] = eval(palette)
|
373 |
-
|
374 |
-
if bands:
|
375 |
-
vis_params = st.text_area(
|
376 |
-
"Enter visualization parameters",
|
377 |
-
"{'bands': ["
|
378 |
-
+ ", ".join([f"'{band}'" for band in bands])
|
379 |
-
+ "]}",
|
380 |
-
)
|
381 |
-
else:
|
382 |
-
vis_params = st.text_area(
|
383 |
-
"Enter visualization parameters",
|
384 |
-
"{}",
|
385 |
-
)
|
386 |
-
try:
|
387 |
-
st.session_state["vis_params"] = eval(vis_params)
|
388 |
-
st.session_state["vis_params"]["palette"] = st.session_state[
|
389 |
-
"palette"
|
390 |
-
]
|
391 |
-
except Exception as e:
|
392 |
-
st.session_state["vis_params"] = None
|
393 |
-
st.error(
|
394 |
-
f"Invalid visualization parameters. It must be a dictionary."
|
395 |
-
)
|
396 |
-
|
397 |
-
elif collection == "MODIS Gap filled Land Surface Temperature Daily":
|
398 |
-
with st.expander("Show dataset details", False):
|
399 |
-
st.markdown(
|
400 |
-
"""
|
401 |
-
See the [Awesome GEE Community Datasets](https://samapriya.github.io/awesome-gee-community-datasets/projects/daily_lst/).
|
402 |
-
"""
|
403 |
-
)
|
404 |
-
|
405 |
-
MODIS_options = ["Daytime (1:30 pm)", "Nighttime (1:30 am)"]
|
406 |
-
MODIS_option = st.selectbox("Select a MODIS dataset:", MODIS_options)
|
407 |
-
if MODIS_option == "Daytime (1:30 pm)":
|
408 |
-
st.session_state[
|
409 |
-
"ee_asset_id"
|
410 |
-
] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
|
411 |
-
else:
|
412 |
-
st.session_state[
|
413 |
-
"ee_asset_id"
|
414 |
-
] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
|
415 |
-
|
416 |
-
palette_options = st.selectbox(
|
417 |
-
"Color palette",
|
418 |
-
cm.list_colormaps(),
|
419 |
-
index=90,
|
420 |
-
)
|
421 |
-
palette_values = cm.get_palette(palette_options, 15)
|
422 |
-
palette = st.text_area(
|
423 |
-
"Enter a custom palette:",
|
424 |
-
palette_values,
|
425 |
-
)
|
426 |
-
st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
|
427 |
-
st.session_state["palette"] = eval(palette)
|
428 |
-
elif collection == "MODIS Ocean Color SMI":
|
429 |
-
with st.expander("Show dataset details", False):
|
430 |
-
st.markdown(
|
431 |
-
"""
|
432 |
-
See the [Earth Engine Data Catalog](https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI).
|
433 |
-
"""
|
434 |
-
)
|
435 |
-
|
436 |
-
MODIS_options = ["Aqua", "Terra"]
|
437 |
-
MODIS_option = st.selectbox("Select a satellite:", MODIS_options)
|
438 |
-
st.session_state["ee_asset_id"] = MODIS_option
|
439 |
-
# if MODIS_option == "Daytime (1:30 pm)":
|
440 |
-
# st.session_state[
|
441 |
-
# "ee_asset_id"
|
442 |
-
# ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
|
443 |
-
# else:
|
444 |
-
# st.session_state[
|
445 |
-
# "ee_asset_id"
|
446 |
-
# ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
|
447 |
-
|
448 |
-
band_dict = {
|
449 |
-
"Chlorophyll a concentration": "chlor_a",
|
450 |
-
"Normalized fluorescence line height": "nflh",
|
451 |
-
"Particulate organic carbon": "poc",
|
452 |
-
"Sea surface temperature": "sst",
|
453 |
-
"Remote sensing reflectance at band 412nm": "Rrs_412",
|
454 |
-
"Remote sensing reflectance at band 443nm": "Rrs_443",
|
455 |
-
"Remote sensing reflectance at band 469nm": "Rrs_469",
|
456 |
-
"Remote sensing reflectance at band 488nm": "Rrs_488",
|
457 |
-
"Remote sensing reflectance at band 531nm": "Rrs_531",
|
458 |
-
"Remote sensing reflectance at band 547nm": "Rrs_547",
|
459 |
-
"Remote sensing reflectance at band 555nm": "Rrs_555",
|
460 |
-
"Remote sensing reflectance at band 645nm": "Rrs_645",
|
461 |
-
"Remote sensing reflectance at band 667nm": "Rrs_667",
|
462 |
-
"Remote sensing reflectance at band 678nm": "Rrs_678",
|
463 |
-
}
|
464 |
-
|
465 |
-
band_options = list(band_dict.keys())
|
466 |
-
band = st.selectbox(
|
467 |
-
"Select a band",
|
468 |
-
band_options,
|
469 |
-
band_options.index("Sea surface temperature"),
|
470 |
-
)
|
471 |
-
st.session_state["band"] = band_dict[band]
|
472 |
-
|
473 |
-
colors = cm.list_colormaps()
|
474 |
-
palette_options = st.selectbox(
|
475 |
-
"Color palette",
|
476 |
-
colors,
|
477 |
-
index=colors.index("coolwarm"),
|
478 |
-
)
|
479 |
-
palette_values = cm.get_palette(palette_options, 15)
|
480 |
-
palette = st.text_area(
|
481 |
-
"Enter a custom palette:",
|
482 |
-
palette_values,
|
483 |
-
)
|
484 |
-
st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
|
485 |
-
st.session_state["palette"] = eval(palette)
|
486 |
-
|
487 |
-
sample_roi = st.selectbox(
|
488 |
-
"Select a sample ROI or upload a GeoJSON file:",
|
489 |
-
roi_options,
|
490 |
-
index=0,
|
491 |
-
)
|
492 |
-
|
493 |
-
add_outline = st.checkbox(
|
494 |
-
"Overlay an administrative boundary on timelapse", False
|
495 |
-
)
|
496 |
-
|
497 |
-
if add_outline:
|
498 |
-
|
499 |
-
with st.expander("Customize administrative boundary", True):
|
500 |
-
|
501 |
-
overlay_options = {
|
502 |
-
"User-defined": None,
|
503 |
-
"Continents": "continents",
|
504 |
-
"Countries": "countries",
|
505 |
-
"US States": "us_states",
|
506 |
-
"China": "china",
|
507 |
-
}
|
508 |
-
|
509 |
-
overlay = st.selectbox(
|
510 |
-
"Select an administrative boundary:",
|
511 |
-
list(overlay_options.keys()),
|
512 |
-
index=2,
|
513 |
-
)
|
514 |
-
|
515 |
-
overlay_data = overlay_options[overlay]
|
516 |
-
|
517 |
-
if overlay_data is None:
|
518 |
-
overlay_data = st.text_input(
|
519 |
-
"Enter an HTTP URL to a GeoJSON file or an ee.FeatureCollection asset id:",
|
520 |
-
"https://raw.githubusercontent.com/giswqs/geemap/master/examples/data/countries.geojson",
|
521 |
-
)
|
522 |
-
|
523 |
-
overlay_color = st.color_picker(
|
524 |
-
"Select a color for the administrative boundary:", "#000000"
|
525 |
-
)
|
526 |
-
overlay_width = st.slider(
|
527 |
-
"Select a line width for the administrative boundary:", 1, 20, 1
|
528 |
-
)
|
529 |
-
overlay_opacity = st.slider(
|
530 |
-
"Select an opacity for the administrative boundary:",
|
531 |
-
0.0,
|
532 |
-
1.0,
|
533 |
-
1.0,
|
534 |
-
0.05,
|
535 |
-
)
|
536 |
-
else:
|
537 |
-
overlay_data = None
|
538 |
-
overlay_color = "black"
|
539 |
-
overlay_width = 1
|
540 |
-
overlay_opacity = 1
|
541 |
-
|
542 |
-
with row1_col1:
|
543 |
-
|
544 |
-
with st.expander(
|
545 |
-
"Steps: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Expand this tab to see a demo π"
|
546 |
-
):
|
547 |
-
video_empty = st.empty()
|
548 |
-
|
549 |
-
data = st.file_uploader(
|
550 |
-
"Upload a GeoJSON file to use as an ROI. Customize timelapse parameters and then click the Submit button ππ",
|
551 |
-
type=["geojson", "kml", "zip"],
|
552 |
-
)
|
553 |
-
|
554 |
-
crs = "epsg:4326"
|
555 |
-
if sample_roi == "Uploaded GeoJSON":
|
556 |
-
if data is None:
|
557 |
-
# st.info(
|
558 |
-
# "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click Submit button"
|
559 |
-
# )
|
560 |
-
if collection in [
|
561 |
-
"Geostationary Operational Environmental Satellites (GOES)",
|
562 |
-
"USDA National Agriculture Imagery Program (NAIP)",
|
563 |
-
] and (not keyword):
|
564 |
-
m.set_center(-100, 40, 3)
|
565 |
-
# else:
|
566 |
-
# m.set_center(4.20, 18.63, zoom=2)
|
567 |
-
else:
|
568 |
-
if collection in [
|
569 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
570 |
-
"Sentinel-2 MSI Surface Reflectance",
|
571 |
-
]:
|
572 |
-
gdf = gpd.GeoDataFrame(
|
573 |
-
index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
|
574 |
-
)
|
575 |
-
elif (
|
576 |
-
collection
|
577 |
-
== "Geostationary Operational Environmental Satellites (GOES)"
|
578 |
-
):
|
579 |
-
gdf = gpd.GeoDataFrame(
|
580 |
-
index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
|
581 |
-
)
|
582 |
-
elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
|
583 |
-
gdf = gpd.GeoDataFrame(
|
584 |
-
index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
|
585 |
-
)
|
586 |
-
|
587 |
-
if sample_roi != "Uploaded GeoJSON":
|
588 |
-
|
589 |
-
if collection in [
|
590 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
591 |
-
"Sentinel-2 MSI Surface Reflectance",
|
592 |
-
]:
|
593 |
-
gdf = gpd.GeoDataFrame(
|
594 |
-
index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
|
595 |
-
)
|
596 |
-
elif (
|
597 |
-
collection
|
598 |
-
== "Geostationary Operational Environmental Satellites (GOES)"
|
599 |
-
):
|
600 |
-
gdf = gpd.GeoDataFrame(
|
601 |
-
index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
|
602 |
-
)
|
603 |
-
elif collection in [
|
604 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
605 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
606 |
-
]:
|
607 |
-
gdf = gpd.GeoDataFrame(
|
608 |
-
index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
|
609 |
-
)
|
610 |
-
elif collection == "MODIS Ocean Color SMI":
|
611 |
-
gdf = gpd.GeoDataFrame(
|
612 |
-
index=[0], crs=crs, geometry=[ocean_rois[sample_roi]]
|
613 |
-
)
|
614 |
-
try:
|
615 |
-
st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
|
616 |
-
except Exception as e:
|
617 |
-
st.error(e)
|
618 |
-
st.error("Please draw another ROI and try again.")
|
619 |
-
return
|
620 |
-
m.add_gdf(gdf, "ROI")
|
621 |
-
|
622 |
-
elif data:
|
623 |
-
gdf = uploaded_file_to_gdf(data)
|
624 |
-
try:
|
625 |
-
st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
|
626 |
-
m.add_gdf(gdf, "ROI")
|
627 |
-
except Exception as e:
|
628 |
-
st.error(e)
|
629 |
-
st.error("Please draw another ROI and try again.")
|
630 |
-
return
|
631 |
-
|
632 |
-
m.to_streamlit(height=600)
|
633 |
-
|
634 |
-
with row1_col2:
|
635 |
-
|
636 |
-
if collection in [
|
637 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
638 |
-
"Sentinel-2 MSI Surface Reflectance",
|
639 |
-
]:
|
640 |
-
|
641 |
-
if collection == "Landsat TM-ETM-OLI Surface Reflectance":
|
642 |
-
sensor_start_year = 1984
|
643 |
-
timelapse_title = "Landsat Timelapse"
|
644 |
-
timelapse_speed = 5
|
645 |
-
elif collection == "Sentinel-2 MSI Surface Reflectance":
|
646 |
-
sensor_start_year = 2015
|
647 |
-
timelapse_title = "Sentinel-2 Timelapse"
|
648 |
-
timelapse_speed = 5
|
649 |
-
video_empty.video("https://youtu.be/VVRK_-dEjR4")
|
650 |
-
|
651 |
-
with st.form("submit_landsat_form"):
|
652 |
-
|
653 |
-
roi = None
|
654 |
-
if st.session_state.get("roi") is not None:
|
655 |
-
roi = st.session_state.get("roi")
|
656 |
-
out_gif = geemap.temp_file_path(".gif")
|
657 |
-
|
658 |
-
title = st.text_input(
|
659 |
-
"Enter a title to show on the timelapse: ", timelapse_title
|
660 |
-
)
|
661 |
-
RGB = st.selectbox(
|
662 |
-
"Select an RGB band combination:",
|
663 |
-
[
|
664 |
-
"Red/Green/Blue",
|
665 |
-
"NIR/Red/Green",
|
666 |
-
"SWIR2/SWIR1/NIR",
|
667 |
-
"NIR/SWIR1/Red",
|
668 |
-
"SWIR2/NIR/Red",
|
669 |
-
"SWIR2/SWIR1/Red",
|
670 |
-
"SWIR1/NIR/Blue",
|
671 |
-
"NIR/SWIR1/Blue",
|
672 |
-
"SWIR2/NIR/Green",
|
673 |
-
"SWIR1/NIR/Red",
|
674 |
-
"SWIR2/NIR/SWIR1",
|
675 |
-
"SWIR1/NIR/SWIR2",
|
676 |
-
],
|
677 |
-
index=9,
|
678 |
-
)
|
679 |
-
|
680 |
-
frequency = st.selectbox(
|
681 |
-
"Select a temporal frequency:",
|
682 |
-
["year", "quarter", "month"],
|
683 |
-
index=0,
|
684 |
-
)
|
685 |
-
|
686 |
-
with st.expander("Customize timelapse"):
|
687 |
-
|
688 |
-
speed = st.slider("Frames per second:", 1, 30, timelapse_speed)
|
689 |
-
dimensions = st.slider(
|
690 |
-
"Maximum dimensions (Width*Height) in pixels", 768, 2000, 768
|
691 |
-
)
|
692 |
-
progress_bar_color = st.color_picker(
|
693 |
-
"Progress bar color:", "#0000ff"
|
694 |
-
)
|
695 |
-
years = st.slider(
|
696 |
-
"Start and end year:",
|
697 |
-
sensor_start_year,
|
698 |
-
today.year,
|
699 |
-
(sensor_start_year, today.year),
|
700 |
-
)
|
701 |
-
months = st.slider("Start and end month:", 1, 12, (1, 12))
|
702 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
703 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
704 |
-
apply_fmask = st.checkbox(
|
705 |
-
"Apply fmask (remove clouds, shadows, snow)", True
|
706 |
-
)
|
707 |
-
font_type = st.selectbox(
|
708 |
-
"Select the font type for the title:",
|
709 |
-
["arial.ttf", "alibaba.otf"],
|
710 |
-
index=0,
|
711 |
-
)
|
712 |
-
fading = st.slider(
|
713 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
714 |
-
)
|
715 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
716 |
-
|
717 |
-
empty_text = st.empty()
|
718 |
-
empty_image = st.empty()
|
719 |
-
empty_fire_image = st.empty()
|
720 |
-
empty_video = st.container()
|
721 |
-
submitted = st.form_submit_button("Submit")
|
722 |
-
if submitted:
|
723 |
-
|
724 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
725 |
-
empty_text.warning(
|
726 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
727 |
-
)
|
728 |
-
else:
|
729 |
-
|
730 |
-
empty_text.text("Computing... Please wait...")
|
731 |
-
|
732 |
-
start_year = years[0]
|
733 |
-
end_year = years[1]
|
734 |
-
start_date = str(months[0]).zfill(2) + "-01"
|
735 |
-
end_date = str(months[1]).zfill(2) + "-30"
|
736 |
-
bands = RGB.split("/")
|
737 |
-
|
738 |
-
try:
|
739 |
-
if collection == "Landsat TM-ETM-OLI Surface Reflectance":
|
740 |
-
out_gif = geemap.landsat_timelapse(
|
741 |
-
roi=roi,
|
742 |
-
out_gif=out_gif,
|
743 |
-
start_year=start_year,
|
744 |
-
end_year=end_year,
|
745 |
-
start_date=start_date,
|
746 |
-
end_date=end_date,
|
747 |
-
bands=bands,
|
748 |
-
apply_fmask=apply_fmask,
|
749 |
-
frames_per_second=speed,
|
750 |
-
# dimensions=dimensions,
|
751 |
-
dimensions=768,
|
752 |
-
overlay_data=overlay_data,
|
753 |
-
overlay_color=overlay_color,
|
754 |
-
overlay_width=overlay_width,
|
755 |
-
overlay_opacity=overlay_opacity,
|
756 |
-
frequency=frequency,
|
757 |
-
date_format=None,
|
758 |
-
title=title,
|
759 |
-
title_xy=("2%", "90%"),
|
760 |
-
add_text=True,
|
761 |
-
text_xy=("2%", "2%"),
|
762 |
-
text_sequence=None,
|
763 |
-
font_type=font_type,
|
764 |
-
font_size=font_size,
|
765 |
-
font_color=font_color,
|
766 |
-
add_progress_bar=True,
|
767 |
-
progress_bar_color=progress_bar_color,
|
768 |
-
progress_bar_height=5,
|
769 |
-
loop=0,
|
770 |
-
mp4=mp4,
|
771 |
-
fading=fading,
|
772 |
-
)
|
773 |
-
elif collection == "Sentinel-2 MSI Surface Reflectance":
|
774 |
-
out_gif = geemap.sentinel2_timelapse(
|
775 |
-
roi=roi,
|
776 |
-
out_gif=out_gif,
|
777 |
-
start_year=start_year,
|
778 |
-
end_year=end_year,
|
779 |
-
start_date=start_date,
|
780 |
-
end_date=end_date,
|
781 |
-
bands=bands,
|
782 |
-
apply_fmask=apply_fmask,
|
783 |
-
frames_per_second=speed,
|
784 |
-
dimensions=768,
|
785 |
-
# dimensions=dimensions,
|
786 |
-
overlay_data=overlay_data,
|
787 |
-
overlay_color=overlay_color,
|
788 |
-
overlay_width=overlay_width,
|
789 |
-
overlay_opacity=overlay_opacity,
|
790 |
-
frequency=frequency,
|
791 |
-
date_format=None,
|
792 |
-
title=title,
|
793 |
-
title_xy=("2%", "90%"),
|
794 |
-
add_text=True,
|
795 |
-
text_xy=("2%", "2%"),
|
796 |
-
text_sequence=None,
|
797 |
-
font_type=font_type,
|
798 |
-
font_size=font_size,
|
799 |
-
font_color=font_color,
|
800 |
-
add_progress_bar=True,
|
801 |
-
progress_bar_color=progress_bar_color,
|
802 |
-
progress_bar_height=5,
|
803 |
-
loop=0,
|
804 |
-
mp4=mp4,
|
805 |
-
fading=fading,
|
806 |
-
)
|
807 |
-
except:
|
808 |
-
empty_text.error(
|
809 |
-
"An error occurred while computing the timelapse. Your probably requested too much data. Try reducing the ROI or timespan."
|
810 |
-
)
|
811 |
-
st.stop()
|
812 |
-
|
813 |
-
if out_gif is not None and os.path.exists(out_gif):
|
814 |
-
|
815 |
-
empty_text.text(
|
816 |
-
"Right click the GIF to save it to your computerπ"
|
817 |
-
)
|
818 |
-
empty_image.image(out_gif)
|
819 |
-
|
820 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
821 |
-
if mp4 and os.path.exists(out_mp4):
|
822 |
-
with empty_video:
|
823 |
-
st.text(
|
824 |
-
"Right click the MP4 to save it to your computerπ"
|
825 |
-
)
|
826 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
827 |
-
|
828 |
-
else:
|
829 |
-
empty_text.error(
|
830 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
831 |
-
)
|
832 |
-
|
833 |
-
elif collection == "Geostationary Operational Environmental Satellites (GOES)":
|
834 |
-
|
835 |
-
video_empty.video("https://youtu.be/16fA2QORG4A")
|
836 |
-
|
837 |
-
with st.form("submit_goes_form"):
|
838 |
-
|
839 |
-
roi = None
|
840 |
-
if st.session_state.get("roi") is not None:
|
841 |
-
roi = st.session_state.get("roi")
|
842 |
-
out_gif = geemap.temp_file_path(".gif")
|
843 |
-
|
844 |
-
satellite = st.selectbox("Select a satellite:", ["GOES-17", "GOES-16"])
|
845 |
-
earliest_date = datetime.date(2017, 7, 10)
|
846 |
-
latest_date = datetime.date.today()
|
847 |
-
|
848 |
-
if sample_roi == "Uploaded GeoJSON":
|
849 |
-
roi_start_date = today - datetime.timedelta(days=2)
|
850 |
-
roi_end_date = today - datetime.timedelta(days=1)
|
851 |
-
roi_start_time = datetime.time(14, 00)
|
852 |
-
roi_end_time = datetime.time(1, 00)
|
853 |
-
else:
|
854 |
-
roi_start = goes_rois[sample_roi]["start_time"]
|
855 |
-
roi_end = goes_rois[sample_roi]["end_time"]
|
856 |
-
roi_start_date = datetime.datetime.strptime(
|
857 |
-
roi_start[:10], "%Y-%m-%d"
|
858 |
-
)
|
859 |
-
roi_end_date = datetime.datetime.strptime(roi_end[:10], "%Y-%m-%d")
|
860 |
-
roi_start_time = datetime.time(
|
861 |
-
int(roi_start[11:13]), int(roi_start[14:16])
|
862 |
-
)
|
863 |
-
roi_end_time = datetime.time(
|
864 |
-
int(roi_end[11:13]), int(roi_end[14:16])
|
865 |
-
)
|
866 |
-
|
867 |
-
start_date = st.date_input("Select the start date:", roi_start_date)
|
868 |
-
end_date = st.date_input("Select the end date:", roi_end_date)
|
869 |
-
|
870 |
-
with st.expander("Customize timelapse"):
|
871 |
-
|
872 |
-
add_fire = st.checkbox("Add Fire/Hotspot Characterization", False)
|
873 |
-
|
874 |
-
scan_type = st.selectbox(
|
875 |
-
"Select a scan type:", ["Full Disk", "CONUS", "Mesoscale"]
|
876 |
-
)
|
877 |
-
|
878 |
-
start_time = st.time_input(
|
879 |
-
"Select the start time of the start date:", roi_start_time
|
880 |
-
)
|
881 |
-
|
882 |
-
end_time = st.time_input(
|
883 |
-
"Select the end time of the end date:", roi_end_time
|
884 |
-
)
|
885 |
-
|
886 |
-
start = (
|
887 |
-
start_date.strftime("%Y-%m-%d")
|
888 |
-
+ "T"
|
889 |
-
+ start_time.strftime("%H:%M:%S")
|
890 |
-
)
|
891 |
-
end = (
|
892 |
-
end_date.strftime("%Y-%m-%d")
|
893 |
-
+ "T"
|
894 |
-
+ end_time.strftime("%H:%M:%S")
|
895 |
-
)
|
896 |
-
|
897 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
898 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
899 |
-
progress_bar_color = st.color_picker(
|
900 |
-
"Progress bar color:", "#0000ff"
|
901 |
-
)
|
902 |
-
font_size = st.slider("Font size:", 10, 50, 20)
|
903 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
904 |
-
fading = st.slider(
|
905 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
906 |
-
)
|
907 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
908 |
-
|
909 |
-
empty_text = st.empty()
|
910 |
-
empty_image = st.empty()
|
911 |
-
empty_video = st.container()
|
912 |
-
empty_fire_text = st.empty()
|
913 |
-
empty_fire_image = st.empty()
|
914 |
-
|
915 |
-
submitted = st.form_submit_button("Submit")
|
916 |
-
if submitted:
|
917 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
918 |
-
empty_text.warning(
|
919 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
920 |
-
)
|
921 |
-
else:
|
922 |
-
empty_text.text("Computing... Please wait...")
|
923 |
-
|
924 |
-
geemap.goes_timelapse(
|
925 |
-
out_gif,
|
926 |
-
start_date=start,
|
927 |
-
end_date=end,
|
928 |
-
data=satellite,
|
929 |
-
scan=scan_type.replace(" ", "_").lower(),
|
930 |
-
region=roi,
|
931 |
-
dimensions=768,
|
932 |
-
framesPerSecond=speed,
|
933 |
-
date_format="YYYY-MM-dd HH:mm",
|
934 |
-
xy=("3%", "3%"),
|
935 |
-
text_sequence=None,
|
936 |
-
font_type="arial.ttf",
|
937 |
-
font_size=font_size,
|
938 |
-
font_color=font_color,
|
939 |
-
add_progress_bar=add_progress_bar,
|
940 |
-
progress_bar_color=progress_bar_color,
|
941 |
-
progress_bar_height=5,
|
942 |
-
loop=0,
|
943 |
-
overlay_data=overlay_data,
|
944 |
-
overlay_color=overlay_color,
|
945 |
-
overlay_width=overlay_width,
|
946 |
-
overlay_opacity=overlay_opacity,
|
947 |
-
mp4=mp4,
|
948 |
-
fading=fading,
|
949 |
-
)
|
950 |
-
|
951 |
-
if out_gif is not None and os.path.exists(out_gif):
|
952 |
-
empty_text.text(
|
953 |
-
"Right click the GIF to save it to your computerπ"
|
954 |
-
)
|
955 |
-
empty_image.image(out_gif)
|
956 |
-
|
957 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
958 |
-
if mp4 and os.path.exists(out_mp4):
|
959 |
-
with empty_video:
|
960 |
-
st.text(
|
961 |
-
"Right click the MP4 to save it to your computerπ"
|
962 |
-
)
|
963 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
964 |
-
|
965 |
-
if add_fire:
|
966 |
-
out_fire_gif = geemap.temp_file_path(".gif")
|
967 |
-
empty_fire_text.text(
|
968 |
-
"Delineating Fire Hotspot... Please wait..."
|
969 |
-
)
|
970 |
-
geemap.goes_fire_timelapse(
|
971 |
-
out_fire_gif,
|
972 |
-
start_date=start,
|
973 |
-
end_date=end,
|
974 |
-
data=satellite,
|
975 |
-
scan=scan_type.replace(" ", "_").lower(),
|
976 |
-
region=roi,
|
977 |
-
dimensions=768,
|
978 |
-
framesPerSecond=speed,
|
979 |
-
date_format="YYYY-MM-dd HH:mm",
|
980 |
-
xy=("3%", "3%"),
|
981 |
-
text_sequence=None,
|
982 |
-
font_type="arial.ttf",
|
983 |
-
font_size=font_size,
|
984 |
-
font_color=font_color,
|
985 |
-
add_progress_bar=add_progress_bar,
|
986 |
-
progress_bar_color=progress_bar_color,
|
987 |
-
progress_bar_height=5,
|
988 |
-
loop=0,
|
989 |
-
)
|
990 |
-
if os.path.exists(out_fire_gif):
|
991 |
-
empty_fire_image.image(out_fire_gif)
|
992 |
-
else:
|
993 |
-
empty_text.text(
|
994 |
-
"Something went wrong, either the ROI is too big or there are no data available for the specified date range. Please try a smaller ROI or different date range."
|
995 |
-
)
|
996 |
-
|
997 |
-
elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
|
998 |
-
|
999 |
-
video_empty.video("https://youtu.be/16fA2QORG4A")
|
1000 |
-
|
1001 |
-
satellite = st.selectbox("Select a satellite:", ["Terra", "Aqua"])
|
1002 |
-
band = st.selectbox("Select a band:", ["NDVI", "EVI"])
|
1003 |
-
|
1004 |
-
with st.form("submit_modis_form"):
|
1005 |
-
|
1006 |
-
roi = None
|
1007 |
-
if st.session_state.get("roi") is not None:
|
1008 |
-
roi = st.session_state.get("roi")
|
1009 |
-
out_gif = geemap.temp_file_path(".gif")
|
1010 |
-
|
1011 |
-
with st.expander("Customize timelapse"):
|
1012 |
-
|
1013 |
-
start = st.date_input(
|
1014 |
-
"Select a start date:", datetime.date(2000, 2, 8)
|
1015 |
-
)
|
1016 |
-
end = st.date_input("Select an end date:", datetime.date.today())
|
1017 |
-
|
1018 |
-
start_date = start.strftime("%Y-%m-%d")
|
1019 |
-
end_date = end.strftime("%Y-%m-%d")
|
1020 |
-
|
1021 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1022 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1023 |
-
progress_bar_color = st.color_picker(
|
1024 |
-
"Progress bar color:", "#0000ff"
|
1025 |
-
)
|
1026 |
-
font_size = st.slider("Font size:", 10, 50, 20)
|
1027 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1028 |
-
|
1029 |
-
font_type = st.selectbox(
|
1030 |
-
"Select the font type for the title:",
|
1031 |
-
["arial.ttf", "alibaba.otf"],
|
1032 |
-
index=0,
|
1033 |
-
)
|
1034 |
-
fading = st.slider(
|
1035 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1036 |
-
)
|
1037 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1038 |
-
|
1039 |
-
empty_text = st.empty()
|
1040 |
-
empty_image = st.empty()
|
1041 |
-
empty_video = st.container()
|
1042 |
-
|
1043 |
-
submitted = st.form_submit_button("Submit")
|
1044 |
-
if submitted:
|
1045 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1046 |
-
empty_text.warning(
|
1047 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1048 |
-
)
|
1049 |
-
else:
|
1050 |
-
|
1051 |
-
empty_text.text("Computing... Please wait...")
|
1052 |
-
|
1053 |
-
geemap.modis_ndvi_timelapse(
|
1054 |
-
out_gif,
|
1055 |
-
satellite,
|
1056 |
-
band,
|
1057 |
-
start_date,
|
1058 |
-
end_date,
|
1059 |
-
roi,
|
1060 |
-
768,
|
1061 |
-
speed,
|
1062 |
-
overlay_data=overlay_data,
|
1063 |
-
overlay_color=overlay_color,
|
1064 |
-
overlay_width=overlay_width,
|
1065 |
-
overlay_opacity=overlay_opacity,
|
1066 |
-
mp4=mp4,
|
1067 |
-
fading=fading,
|
1068 |
-
)
|
1069 |
-
|
1070 |
-
geemap.reduce_gif_size(out_gif)
|
1071 |
-
|
1072 |
-
empty_text.text(
|
1073 |
-
"Right click the GIF to save it to your computerπ"
|
1074 |
-
)
|
1075 |
-
empty_image.image(out_gif)
|
1076 |
-
|
1077 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1078 |
-
if mp4 and os.path.exists(out_mp4):
|
1079 |
-
with empty_video:
|
1080 |
-
st.text(
|
1081 |
-
"Right click the MP4 to save it to your computerπ"
|
1082 |
-
)
|
1083 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1084 |
-
|
1085 |
-
elif collection == "Any Earth Engine ImageCollection":
|
1086 |
-
|
1087 |
-
with st.form("submit_ts_form"):
|
1088 |
-
with st.expander("Customize timelapse"):
|
1089 |
-
|
1090 |
-
title = st.text_input(
|
1091 |
-
"Enter a title to show on the timelapse: ", "Timelapse"
|
1092 |
-
)
|
1093 |
-
start_date = st.date_input(
|
1094 |
-
"Select the start date:", datetime.date(2020, 1, 1)
|
1095 |
-
)
|
1096 |
-
end_date = st.date_input(
|
1097 |
-
"Select the end date:", datetime.date.today()
|
1098 |
-
)
|
1099 |
-
frequency = st.selectbox(
|
1100 |
-
"Select a temporal frequency:",
|
1101 |
-
["year", "quarter", "month", "day", "hour", "minute", "second"],
|
1102 |
-
index=0,
|
1103 |
-
)
|
1104 |
-
reducer = st.selectbox(
|
1105 |
-
"Select a reducer for aggregating data:",
|
1106 |
-
["median", "mean", "min", "max", "sum", "variance", "stdDev"],
|
1107 |
-
index=0,
|
1108 |
-
)
|
1109 |
-
data_format = st.selectbox(
|
1110 |
-
"Select a date format to show on the timelapse:",
|
1111 |
-
[
|
1112 |
-
"YYYY-MM-dd",
|
1113 |
-
"YYYY",
|
1114 |
-
"YYMM-MM",
|
1115 |
-
"YYYY-MM-dd HH:mm",
|
1116 |
-
"YYYY-MM-dd HH:mm:ss",
|
1117 |
-
"HH:mm",
|
1118 |
-
"HH:mm:ss",
|
1119 |
-
"w",
|
1120 |
-
"M",
|
1121 |
-
"d",
|
1122 |
-
"D",
|
1123 |
-
],
|
1124 |
-
index=0,
|
1125 |
-
)
|
1126 |
-
|
1127 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1128 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1129 |
-
progress_bar_color = st.color_picker(
|
1130 |
-
"Progress bar color:", "#0000ff"
|
1131 |
-
)
|
1132 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1133 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1134 |
-
font_type = st.selectbox(
|
1135 |
-
"Select the font type for the title:",
|
1136 |
-
["arial.ttf", "alibaba.otf"],
|
1137 |
-
index=0,
|
1138 |
-
)
|
1139 |
-
fading = st.slider(
|
1140 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1141 |
-
)
|
1142 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1143 |
-
|
1144 |
-
empty_text = st.empty()
|
1145 |
-
empty_image = st.empty()
|
1146 |
-
empty_video = st.container()
|
1147 |
-
empty_fire_image = st.empty()
|
1148 |
-
|
1149 |
-
roi = None
|
1150 |
-
if st.session_state.get("roi") is not None:
|
1151 |
-
roi = st.session_state.get("roi")
|
1152 |
-
out_gif = geemap.temp_file_path(".gif")
|
1153 |
-
|
1154 |
-
submitted = st.form_submit_button("Submit")
|
1155 |
-
if submitted:
|
1156 |
-
|
1157 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1158 |
-
empty_text.warning(
|
1159 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1160 |
-
)
|
1161 |
-
else:
|
1162 |
-
|
1163 |
-
empty_text.text("Computing... Please wait...")
|
1164 |
-
try:
|
1165 |
-
geemap.create_timelapse(
|
1166 |
-
st.session_state.get("ee_asset_id"),
|
1167 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1168 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1169 |
-
region=roi,
|
1170 |
-
frequency=frequency,
|
1171 |
-
reducer=reducer,
|
1172 |
-
date_format=data_format,
|
1173 |
-
out_gif=out_gif,
|
1174 |
-
bands=st.session_state.get("bands"),
|
1175 |
-
palette=st.session_state.get("palette"),
|
1176 |
-
vis_params=st.session_state.get("vis_params"),
|
1177 |
-
dimensions=768,
|
1178 |
-
frames_per_second=speed,
|
1179 |
-
crs="EPSG:3857",
|
1180 |
-
overlay_data=overlay_data,
|
1181 |
-
overlay_color=overlay_color,
|
1182 |
-
overlay_width=overlay_width,
|
1183 |
-
overlay_opacity=overlay_opacity,
|
1184 |
-
title=title,
|
1185 |
-
title_xy=("2%", "90%"),
|
1186 |
-
add_text=True,
|
1187 |
-
text_xy=("2%", "2%"),
|
1188 |
-
text_sequence=None,
|
1189 |
-
font_type=font_type,
|
1190 |
-
font_size=font_size,
|
1191 |
-
font_color=font_color,
|
1192 |
-
add_progress_bar=add_progress_bar,
|
1193 |
-
progress_bar_color=progress_bar_color,
|
1194 |
-
progress_bar_height=5,
|
1195 |
-
loop=0,
|
1196 |
-
mp4=mp4,
|
1197 |
-
fading=fading,
|
1198 |
-
)
|
1199 |
-
except:
|
1200 |
-
empty_text.error(
|
1201 |
-
"An error occurred while computing the timelapse. You probably requested too much data. Try reducing the ROI or timespan."
|
1202 |
-
)
|
1203 |
-
|
1204 |
-
empty_text.text(
|
1205 |
-
"Right click the GIF to save it to your computerπ"
|
1206 |
-
)
|
1207 |
-
empty_image.image(out_gif)
|
1208 |
-
|
1209 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1210 |
-
if mp4 and os.path.exists(out_mp4):
|
1211 |
-
with empty_video:
|
1212 |
-
st.text(
|
1213 |
-
"Right click the MP4 to save it to your computerπ"
|
1214 |
-
)
|
1215 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1216 |
-
|
1217 |
-
elif collection in [
|
1218 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
1219 |
-
"MODIS Ocean Color SMI",
|
1220 |
-
]:
|
1221 |
-
|
1222 |
-
with st.form("submit_ts_form"):
|
1223 |
-
with st.expander("Customize timelapse"):
|
1224 |
-
|
1225 |
-
title = st.text_input(
|
1226 |
-
"Enter a title to show on the timelapse: ",
|
1227 |
-
"Surface Temperature",
|
1228 |
-
)
|
1229 |
-
start_date = st.date_input(
|
1230 |
-
"Select the start date:", datetime.date(2018, 1, 1)
|
1231 |
-
)
|
1232 |
-
end_date = st.date_input(
|
1233 |
-
"Select the end date:", datetime.date(2020, 12, 31)
|
1234 |
-
)
|
1235 |
-
frequency = st.selectbox(
|
1236 |
-
"Select a temporal frequency:",
|
1237 |
-
["year", "quarter", "month", "week", "day"],
|
1238 |
-
index=2,
|
1239 |
-
)
|
1240 |
-
reducer = st.selectbox(
|
1241 |
-
"Select a reducer for aggregating data:",
|
1242 |
-
["median", "mean", "min", "max", "sum", "variance", "stdDev"],
|
1243 |
-
index=0,
|
1244 |
-
)
|
1245 |
-
|
1246 |
-
vis_params = st.text_area(
|
1247 |
-
"Enter visualization parameters",
|
1248 |
-
"",
|
1249 |
-
help="Enter a string in the format of a dictionary, such as '{'min': 23, 'max': 32}'",
|
1250 |
-
)
|
1251 |
-
|
1252 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1253 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1254 |
-
progress_bar_color = st.color_picker(
|
1255 |
-
"Progress bar color:", "#0000ff"
|
1256 |
-
)
|
1257 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1258 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1259 |
-
font_type = st.selectbox(
|
1260 |
-
"Select the font type for the title:",
|
1261 |
-
["arial.ttf", "alibaba.otf"],
|
1262 |
-
index=0,
|
1263 |
-
)
|
1264 |
-
add_colorbar = st.checkbox("Add a colorbar", True)
|
1265 |
-
colorbar_label = st.text_input(
|
1266 |
-
"Enter the colorbar label:", "Surface Temperature (Β°C)"
|
1267 |
-
)
|
1268 |
-
fading = st.slider(
|
1269 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1270 |
-
)
|
1271 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1272 |
-
|
1273 |
-
empty_text = st.empty()
|
1274 |
-
empty_image = st.empty()
|
1275 |
-
empty_video = st.container()
|
1276 |
-
|
1277 |
-
roi = None
|
1278 |
-
if st.session_state.get("roi") is not None:
|
1279 |
-
roi = st.session_state.get("roi")
|
1280 |
-
out_gif = geemap.temp_file_path(".gif")
|
1281 |
-
|
1282 |
-
submitted = st.form_submit_button("Submit")
|
1283 |
-
if submitted:
|
1284 |
-
|
1285 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1286 |
-
empty_text.warning(
|
1287 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1288 |
-
)
|
1289 |
-
else:
|
1290 |
-
|
1291 |
-
empty_text.text("Computing... Please wait...")
|
1292 |
-
try:
|
1293 |
-
if (
|
1294 |
-
collection
|
1295 |
-
== "MODIS Gap filled Land Surface Temperature Daily"
|
1296 |
-
):
|
1297 |
-
out_gif = geemap.create_timelapse(
|
1298 |
-
st.session_state.get("ee_asset_id"),
|
1299 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1300 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1301 |
-
region=roi,
|
1302 |
-
bands=None,
|
1303 |
-
frequency=frequency,
|
1304 |
-
reducer=reducer,
|
1305 |
-
date_format=None,
|
1306 |
-
out_gif=out_gif,
|
1307 |
-
palette=st.session_state.get("palette"),
|
1308 |
-
vis_params=None,
|
1309 |
-
dimensions=768,
|
1310 |
-
frames_per_second=speed,
|
1311 |
-
crs="EPSG:3857",
|
1312 |
-
overlay_data=overlay_data,
|
1313 |
-
overlay_color=overlay_color,
|
1314 |
-
overlay_width=overlay_width,
|
1315 |
-
overlay_opacity=overlay_opacity,
|
1316 |
-
title=title,
|
1317 |
-
title_xy=("2%", "90%"),
|
1318 |
-
add_text=True,
|
1319 |
-
text_xy=("2%", "2%"),
|
1320 |
-
text_sequence=None,
|
1321 |
-
font_type=font_type,
|
1322 |
-
font_size=font_size,
|
1323 |
-
font_color=font_color,
|
1324 |
-
add_progress_bar=add_progress_bar,
|
1325 |
-
progress_bar_color=progress_bar_color,
|
1326 |
-
progress_bar_height=5,
|
1327 |
-
add_colorbar=add_colorbar,
|
1328 |
-
colorbar_label=colorbar_label,
|
1329 |
-
loop=0,
|
1330 |
-
mp4=mp4,
|
1331 |
-
fading=fading,
|
1332 |
-
)
|
1333 |
-
elif collection == "MODIS Ocean Color SMI":
|
1334 |
-
if vis_params.startswith("{") and vis_params.endswith(
|
1335 |
-
"}"
|
1336 |
-
):
|
1337 |
-
vis_params = eval(vis_params)
|
1338 |
-
else:
|
1339 |
-
vis_params = None
|
1340 |
-
out_gif = geemap.modis_ocean_color_timelapse(
|
1341 |
-
st.session_state.get("ee_asset_id"),
|
1342 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1343 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1344 |
-
region=roi,
|
1345 |
-
bands=st.session_state["band"],
|
1346 |
-
frequency=frequency,
|
1347 |
-
reducer=reducer,
|
1348 |
-
date_format=None,
|
1349 |
-
out_gif=out_gif,
|
1350 |
-
palette=st.session_state.get("palette"),
|
1351 |
-
vis_params=vis_params,
|
1352 |
-
dimensions=768,
|
1353 |
-
frames_per_second=speed,
|
1354 |
-
crs="EPSG:3857",
|
1355 |
-
overlay_data=overlay_data,
|
1356 |
-
overlay_color=overlay_color,
|
1357 |
-
overlay_width=overlay_width,
|
1358 |
-
overlay_opacity=overlay_opacity,
|
1359 |
-
title=title,
|
1360 |
-
title_xy=("2%", "90%"),
|
1361 |
-
add_text=True,
|
1362 |
-
text_xy=("2%", "2%"),
|
1363 |
-
text_sequence=None,
|
1364 |
-
font_type=font_type,
|
1365 |
-
font_size=font_size,
|
1366 |
-
font_color=font_color,
|
1367 |
-
add_progress_bar=add_progress_bar,
|
1368 |
-
progress_bar_color=progress_bar_color,
|
1369 |
-
progress_bar_height=5,
|
1370 |
-
add_colorbar=add_colorbar,
|
1371 |
-
colorbar_label=colorbar_label,
|
1372 |
-
loop=0,
|
1373 |
-
mp4=mp4,
|
1374 |
-
fading=fading,
|
1375 |
-
)
|
1376 |
-
except:
|
1377 |
-
empty_text.error(
|
1378 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
1379 |
-
)
|
1380 |
-
|
1381 |
-
if out_gif is not None and os.path.exists(out_gif):
|
1382 |
-
|
1383 |
-
geemap.reduce_gif_size(out_gif)
|
1384 |
-
|
1385 |
-
empty_text.text(
|
1386 |
-
"Right click the GIF to save it to your computerπ"
|
1387 |
-
)
|
1388 |
-
empty_image.image(out_gif)
|
1389 |
-
|
1390 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1391 |
-
if mp4 and os.path.exists(out_mp4):
|
1392 |
-
with empty_video:
|
1393 |
-
st.text(
|
1394 |
-
"Right click the MP4 to save it to your computerπ"
|
1395 |
-
)
|
1396 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1397 |
-
|
1398 |
-
else:
|
1399 |
-
st.error(
|
1400 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
1401 |
-
)
|
1402 |
-
|
1403 |
-
elif collection == "USDA National Agriculture Imagery Program (NAIP)":
|
1404 |
-
|
1405 |
-
with st.form("submit_naip_form"):
|
1406 |
-
with st.expander("Customize timelapse"):
|
1407 |
-
|
1408 |
-
title = st.text_input(
|
1409 |
-
"Enter a title to show on the timelapse: ", "NAIP Timelapse"
|
1410 |
-
)
|
1411 |
-
|
1412 |
-
years = st.slider(
|
1413 |
-
"Start and end year:",
|
1414 |
-
2003,
|
1415 |
-
today.year,
|
1416 |
-
(2003, today.year),
|
1417 |
-
)
|
1418 |
-
|
1419 |
-
bands = st.selectbox(
|
1420 |
-
"Select a band combination:", ["N/R/G", "R/G/B"], index=0
|
1421 |
-
)
|
1422 |
-
|
1423 |
-
speed = st.slider("Frames per second:", 1, 30, 3)
|
1424 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1425 |
-
progress_bar_color = st.color_picker(
|
1426 |
-
"Progress bar color:", "#0000ff"
|
1427 |
-
)
|
1428 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1429 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1430 |
-
font_type = st.selectbox(
|
1431 |
-
"Select the font type for the title:",
|
1432 |
-
["arial.ttf", "alibaba.otf"],
|
1433 |
-
index=0,
|
1434 |
-
)
|
1435 |
-
fading = st.slider(
|
1436 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1437 |
-
)
|
1438 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1439 |
-
|
1440 |
-
empty_text = st.empty()
|
1441 |
-
empty_image = st.empty()
|
1442 |
-
empty_video = st.container()
|
1443 |
-
empty_fire_image = st.empty()
|
1444 |
-
|
1445 |
-
roi = None
|
1446 |
-
if st.session_state.get("roi") is not None:
|
1447 |
-
roi = st.session_state.get("roi")
|
1448 |
-
out_gif = geemap.temp_file_path(".gif")
|
1449 |
-
|
1450 |
-
submitted = st.form_submit_button("Submit")
|
1451 |
-
if submitted:
|
1452 |
-
|
1453 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1454 |
-
empty_text.warning(
|
1455 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1456 |
-
)
|
1457 |
-
else:
|
1458 |
-
|
1459 |
-
empty_text.text("Computing... Please wait...")
|
1460 |
-
try:
|
1461 |
-
geemap.naip_timelapse(
|
1462 |
-
roi,
|
1463 |
-
years[0],
|
1464 |
-
years[1],
|
1465 |
-
out_gif,
|
1466 |
-
bands=bands.split("/"),
|
1467 |
-
palette=st.session_state.get("palette"),
|
1468 |
-
vis_params=None,
|
1469 |
-
dimensions=768,
|
1470 |
-
frames_per_second=speed,
|
1471 |
-
crs="EPSG:3857",
|
1472 |
-
overlay_data=overlay_data,
|
1473 |
-
overlay_color=overlay_color,
|
1474 |
-
overlay_width=overlay_width,
|
1475 |
-
overlay_opacity=overlay_opacity,
|
1476 |
-
title=title,
|
1477 |
-
title_xy=("2%", "90%"),
|
1478 |
-
add_text=True,
|
1479 |
-
text_xy=("2%", "2%"),
|
1480 |
-
text_sequence=None,
|
1481 |
-
font_type=font_type,
|
1482 |
-
font_size=font_size,
|
1483 |
-
font_color=font_color,
|
1484 |
-
add_progress_bar=add_progress_bar,
|
1485 |
-
progress_bar_color=progress_bar_color,
|
1486 |
-
progress_bar_height=5,
|
1487 |
-
loop=0,
|
1488 |
-
mp4=mp4,
|
1489 |
-
fading=fading,
|
1490 |
-
)
|
1491 |
-
except:
|
1492 |
-
empty_text.error(
|
1493 |
-
"Something went wrong. You either requested too much data or the ROI is outside the U.S."
|
1494 |
-
)
|
1495 |
-
|
1496 |
-
if out_gif is not None and os.path.exists(out_gif):
|
1497 |
-
|
1498 |
-
empty_text.text(
|
1499 |
-
"Right click the GIF to save it to your computerπ"
|
1500 |
-
)
|
1501 |
-
empty_image.image(out_gif)
|
1502 |
-
|
1503 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1504 |
-
if mp4 and os.path.exists(out_mp4):
|
1505 |
-
with empty_video:
|
1506 |
-
st.text(
|
1507 |
-
"Right click the MP4 to save it to your computerπ"
|
1508 |
-
)
|
1509 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1510 |
-
|
1511 |
-
else:
|
1512 |
-
st.error(
|
1513 |
-
"Something went wrong. You either requested too much data or the ROI is outside the U.S."
|
1514 |
-
)
|
1515 |
-
|
1516 |
-
|
1517 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,484 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import os
|
3 |
-
import pathlib
|
4 |
-
import requests
|
5 |
-
import zipfile
|
6 |
-
import pandas as pd
|
7 |
-
import pydeck as pdk
|
8 |
-
import geopandas as gpd
|
9 |
-
import streamlit as st
|
10 |
-
import leafmap.colormaps as cm
|
11 |
-
from leafmap.common import hex_to_rgb
|
12 |
-
|
13 |
-
st.set_page_config(layout="wide")
|
14 |
-
|
15 |
-
st.sidebar.title("About")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
19 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
st.sidebar.title("Contact")
|
24 |
-
st.sidebar.info(
|
25 |
-
"""
|
26 |
-
Qiusheng Wu: <https://wetlands.io>
|
27 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
28 |
-
"""
|
29 |
-
)
|
30 |
-
|
31 |
-
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
|
32 |
-
# We create a downloads directory within the streamlit static asset directory
|
33 |
-
# and we write output files to it
|
34 |
-
DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
|
35 |
-
if not DOWNLOADS_PATH.is_dir():
|
36 |
-
DOWNLOADS_PATH.mkdir()
|
37 |
-
|
38 |
-
# Data source: https://www.realtor.com/research/data/
|
39 |
-
# link_prefix = "https://econdata.s3-us-west-2.amazonaws.com/Reports/"
|
40 |
-
link_prefix = "https://raw.githubusercontent.com/giswqs/data/main/housing/"
|
41 |
-
|
42 |
-
data_links = {
|
43 |
-
"weekly": {
|
44 |
-
"national": link_prefix + "Core/listing_weekly_core_aggregate_by_country.csv",
|
45 |
-
"metro": link_prefix + "Core/listing_weekly_core_aggregate_by_metro.csv",
|
46 |
-
},
|
47 |
-
"monthly_current": {
|
48 |
-
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country.csv",
|
49 |
-
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State.csv",
|
50 |
-
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro.csv",
|
51 |
-
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County.csv",
|
52 |
-
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip.csv",
|
53 |
-
},
|
54 |
-
"monthly_historical": {
|
55 |
-
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country_History.csv",
|
56 |
-
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State_History.csv",
|
57 |
-
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
|
58 |
-
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County_History.csv",
|
59 |
-
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip_History.csv",
|
60 |
-
},
|
61 |
-
"hotness": {
|
62 |
-
"metro": link_prefix
|
63 |
-
+ "Hotness/RDC_Inventory_Hotness_Metrics_Metro_History.csv",
|
64 |
-
"county": link_prefix
|
65 |
-
+ "Hotness/RDC_Inventory_Hotness_Metrics_County_History.csv",
|
66 |
-
"zip": link_prefix + "Hotness/RDC_Inventory_Hotness_Metrics_Zip_History.csv",
|
67 |
-
},
|
68 |
-
}
|
69 |
-
|
70 |
-
|
71 |
-
def get_data_columns(df, category, frequency="monthly"):
|
72 |
-
if frequency == "monthly":
|
73 |
-
if category.lower() == "county":
|
74 |
-
del_cols = ["month_date_yyyymm", "county_fips", "county_name"]
|
75 |
-
elif category.lower() == "state":
|
76 |
-
del_cols = ["month_date_yyyymm", "state", "state_id"]
|
77 |
-
elif category.lower() == "national":
|
78 |
-
del_cols = ["month_date_yyyymm", "country"]
|
79 |
-
elif category.lower() == "metro":
|
80 |
-
del_cols = ["month_date_yyyymm", "cbsa_code", "cbsa_title", "HouseholdRank"]
|
81 |
-
elif category.lower() == "zip":
|
82 |
-
del_cols = ["month_date_yyyymm", "postal_code", "zip_name", "flag"]
|
83 |
-
elif frequency == "weekly":
|
84 |
-
if category.lower() == "national":
|
85 |
-
del_cols = ["week_end_date", "geo_country"]
|
86 |
-
elif category.lower() == "metro":
|
87 |
-
del_cols = ["week_end_date", "cbsa_code", "cbsa_title", "hh_rank"]
|
88 |
-
|
89 |
-
cols = df.columns.values.tolist()
|
90 |
-
|
91 |
-
for col in cols:
|
92 |
-
if col.strip() in del_cols:
|
93 |
-
cols.remove(col)
|
94 |
-
if category.lower() == "metro":
|
95 |
-
return cols[2:]
|
96 |
-
else:
|
97 |
-
return cols[1:]
|
98 |
-
|
99 |
-
|
100 |
-
@st.cache
|
101 |
-
def get_inventory_data(url):
|
102 |
-
df = pd.read_csv(url)
|
103 |
-
url = url.lower()
|
104 |
-
if "county" in url:
|
105 |
-
df["county_fips"] = df["county_fips"].map(str)
|
106 |
-
df["county_fips"] = df["county_fips"].str.zfill(5)
|
107 |
-
elif "state" in url:
|
108 |
-
df["STUSPS"] = df["state_id"].str.upper()
|
109 |
-
elif "metro" in url:
|
110 |
-
df["cbsa_code"] = df["cbsa_code"].map(str)
|
111 |
-
elif "zip" in url:
|
112 |
-
df["postal_code"] = df["postal_code"].map(str)
|
113 |
-
df["postal_code"] = df["postal_code"].str.zfill(5)
|
114 |
-
|
115 |
-
if "listing_weekly_core_aggregate_by_country" in url:
|
116 |
-
columns = get_data_columns(df, "national", "weekly")
|
117 |
-
for column in columns:
|
118 |
-
if column != "median_days_on_market_by_day_yy":
|
119 |
-
df[column] = df[column].str.rstrip("%").astype(float) / 100
|
120 |
-
if "listing_weekly_core_aggregate_by_metro" in url:
|
121 |
-
columns = get_data_columns(df, "metro", "weekly")
|
122 |
-
for column in columns:
|
123 |
-
if column != "median_days_on_market_by_day_yy":
|
124 |
-
df[column] = df[column].str.rstrip("%").astype(float) / 100
|
125 |
-
df["cbsa_code"] = df["cbsa_code"].str[:5]
|
126 |
-
return df
|
127 |
-
|
128 |
-
|
129 |
-
def filter_weekly_inventory(df, week):
|
130 |
-
df = df[df["week_end_date"] == week]
|
131 |
-
return df
|
132 |
-
|
133 |
-
|
134 |
-
def get_start_end_year(df):
|
135 |
-
start_year = int(str(df["month_date_yyyymm"].min())[:4])
|
136 |
-
end_year = int(str(df["month_date_yyyymm"].max())[:4])
|
137 |
-
return start_year, end_year
|
138 |
-
|
139 |
-
|
140 |
-
def get_periods(df):
|
141 |
-
return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
|
142 |
-
|
143 |
-
|
144 |
-
@st.cache
|
145 |
-
def get_geom_data(category):
|
146 |
-
|
147 |
-
prefix = (
|
148 |
-
"https://raw.githubusercontent.com/giswqs/streamlit-geospatial/master/data/"
|
149 |
-
)
|
150 |
-
links = {
|
151 |
-
"national": prefix + "us_nation.geojson",
|
152 |
-
"state": prefix + "us_states.geojson",
|
153 |
-
"county": prefix + "us_counties.geojson",
|
154 |
-
"metro": prefix + "us_metro_areas.geojson",
|
155 |
-
"zip": "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_zcta510_500k.zip",
|
156 |
-
}
|
157 |
-
|
158 |
-
if category.lower() == "zip":
|
159 |
-
r = requests.get(links[category])
|
160 |
-
out_zip = os.path.join(DOWNLOADS_PATH, "cb_2018_us_zcta510_500k.zip")
|
161 |
-
with open(out_zip, "wb") as code:
|
162 |
-
code.write(r.content)
|
163 |
-
zip_ref = zipfile.ZipFile(out_zip, "r")
|
164 |
-
zip_ref.extractall(DOWNLOADS_PATH)
|
165 |
-
gdf = gpd.read_file(out_zip.replace("zip", "shp"))
|
166 |
-
else:
|
167 |
-
gdf = gpd.read_file(links[category])
|
168 |
-
return gdf
|
169 |
-
|
170 |
-
|
171 |
-
def join_attributes(gdf, df, category):
|
172 |
-
|
173 |
-
new_gdf = None
|
174 |
-
if category == "county":
|
175 |
-
new_gdf = gdf.merge(df, left_on="GEOID", right_on="county_fips", how="outer")
|
176 |
-
elif category == "state":
|
177 |
-
new_gdf = gdf.merge(df, left_on="STUSPS", right_on="STUSPS", how="outer")
|
178 |
-
elif category == "national":
|
179 |
-
if "geo_country" in df.columns.values.tolist():
|
180 |
-
df["country"] = None
|
181 |
-
df.loc[0, "country"] = "United States"
|
182 |
-
new_gdf = gdf.merge(df, left_on="NAME", right_on="country", how="outer")
|
183 |
-
elif category == "metro":
|
184 |
-
new_gdf = gdf.merge(df, left_on="CBSAFP", right_on="cbsa_code", how="outer")
|
185 |
-
elif category == "zip":
|
186 |
-
new_gdf = gdf.merge(df, left_on="GEOID10", right_on="postal_code", how="outer")
|
187 |
-
return new_gdf
|
188 |
-
|
189 |
-
|
190 |
-
def select_non_null(gdf, col_name):
|
191 |
-
new_gdf = gdf[~gdf[col_name].isna()]
|
192 |
-
return new_gdf
|
193 |
-
|
194 |
-
|
195 |
-
def select_null(gdf, col_name):
|
196 |
-
new_gdf = gdf[gdf[col_name].isna()]
|
197 |
-
return new_gdf
|
198 |
-
|
199 |
-
|
200 |
-
def get_data_dict(name):
|
201 |
-
in_csv = os.path.join(os.getcwd(), "data/realtor_data_dict.csv")
|
202 |
-
df = pd.read_csv(in_csv)
|
203 |
-
label = list(df[df["Name"] == name]["Label"])[0]
|
204 |
-
desc = list(df[df["Name"] == name]["Description"])[0]
|
205 |
-
return label, desc
|
206 |
-
|
207 |
-
|
208 |
-
def get_weeks(df):
|
209 |
-
seq = list(set(df[~df["week_end_date"].isnull()]["week_end_date"].tolist()))
|
210 |
-
weeks = [
|
211 |
-
datetime.date(int(d.split("/")[2]), int(d.split("/")[0]), int(d.split("/")[1]))
|
212 |
-
for d in seq
|
213 |
-
]
|
214 |
-
weeks.sort()
|
215 |
-
return weeks
|
216 |
-
|
217 |
-
|
218 |
-
def get_saturday(in_date):
|
219 |
-
idx = (in_date.weekday() + 1) % 7
|
220 |
-
sat = in_date + datetime.timedelta(6 - idx)
|
221 |
-
return sat
|
222 |
-
|
223 |
-
|
224 |
-
def app():
|
225 |
-
|
226 |
-
st.title("U.S. Real Estate Data and Market Trends")
|
227 |
-
st.markdown(
|
228 |
-
"""**Introduction:** This interactive dashboard is designed for visualizing U.S. real estate data and market trends at multiple levels (i.e., national,
|
229 |
-
state, county, and metro). The data sources include [Real Estate Data](https://www.realtor.com/research/data) from realtor.com and
|
230 |
-
[Cartographic Boundary Files](https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html) from U.S. Census Bureau.
|
231 |
-
Several open-source packages are used to process the data and generate the visualizations, e.g., [streamlit](https://streamlit.io),
|
232 |
-
[geopandas](https://geopandas.org), [leafmap](https://leafmap.org), and [pydeck](https://deckgl.readthedocs.io).
|
233 |
-
"""
|
234 |
-
)
|
235 |
-
|
236 |
-
with st.expander("See a demo"):
|
237 |
-
st.image("https://i.imgur.com/Z3dk6Tr.gif")
|
238 |
-
|
239 |
-
row1_col1, row1_col2, row1_col3, row1_col4, row1_col5 = st.columns(
|
240 |
-
[0.6, 0.8, 0.6, 1.4, 2]
|
241 |
-
)
|
242 |
-
with row1_col1:
|
243 |
-
frequency = st.selectbox("Monthly/weekly data", ["Monthly", "Weekly"])
|
244 |
-
with row1_col2:
|
245 |
-
types = ["Current month data", "Historical data"]
|
246 |
-
if frequency == "Weekly":
|
247 |
-
types.remove("Current month data")
|
248 |
-
cur_hist = st.selectbox(
|
249 |
-
"Current/historical data",
|
250 |
-
types,
|
251 |
-
)
|
252 |
-
with row1_col3:
|
253 |
-
if frequency == "Monthly":
|
254 |
-
scale = st.selectbox(
|
255 |
-
"Scale", ["National", "State", "Metro", "County"], index=3
|
256 |
-
)
|
257 |
-
else:
|
258 |
-
scale = st.selectbox("Scale", ["National", "Metro"], index=1)
|
259 |
-
|
260 |
-
gdf = get_geom_data(scale.lower())
|
261 |
-
|
262 |
-
if frequency == "Weekly":
|
263 |
-
inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
|
264 |
-
weeks = get_weeks(inventory_df)
|
265 |
-
with row1_col1:
|
266 |
-
selected_date = st.date_input("Select a date", value=weeks[-1])
|
267 |
-
saturday = get_saturday(selected_date)
|
268 |
-
selected_period = saturday.strftime("%-m/%-d/%Y")
|
269 |
-
if saturday not in weeks:
|
270 |
-
st.error(
|
271 |
-
"The selected date is not available in the data. Please select a date between {} and {}".format(
|
272 |
-
weeks[0], weeks[-1]
|
273 |
-
)
|
274 |
-
)
|
275 |
-
selected_period = weeks[-1].strftime("%-m/%-d/%Y")
|
276 |
-
inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
|
277 |
-
inventory_df = filter_weekly_inventory(inventory_df, selected_period)
|
278 |
-
|
279 |
-
if frequency == "Monthly":
|
280 |
-
if cur_hist == "Current month data":
|
281 |
-
inventory_df = get_inventory_data(
|
282 |
-
data_links["monthly_current"][scale.lower()]
|
283 |
-
)
|
284 |
-
selected_period = get_periods(inventory_df)[0]
|
285 |
-
else:
|
286 |
-
with row1_col2:
|
287 |
-
inventory_df = get_inventory_data(
|
288 |
-
data_links["monthly_historical"][scale.lower()]
|
289 |
-
)
|
290 |
-
start_year, end_year = get_start_end_year(inventory_df)
|
291 |
-
periods = get_periods(inventory_df)
|
292 |
-
with st.expander("Select year and month", True):
|
293 |
-
selected_year = st.slider(
|
294 |
-
"Year",
|
295 |
-
start_year,
|
296 |
-
end_year,
|
297 |
-
value=start_year,
|
298 |
-
step=1,
|
299 |
-
)
|
300 |
-
selected_month = st.slider(
|
301 |
-
"Month",
|
302 |
-
min_value=1,
|
303 |
-
max_value=12,
|
304 |
-
value=int(periods[0][-2:]),
|
305 |
-
step=1,
|
306 |
-
)
|
307 |
-
selected_period = str(selected_year) + str(selected_month).zfill(2)
|
308 |
-
if selected_period not in periods:
|
309 |
-
st.error("Data not available for selected year and month")
|
310 |
-
selected_period = periods[0]
|
311 |
-
inventory_df = inventory_df[
|
312 |
-
inventory_df["month_date_yyyymm"] == int(selected_period)
|
313 |
-
]
|
314 |
-
|
315 |
-
data_cols = get_data_columns(inventory_df, scale.lower(), frequency.lower())
|
316 |
-
|
317 |
-
with row1_col4:
|
318 |
-
selected_col = st.selectbox("Attribute", data_cols)
|
319 |
-
with row1_col5:
|
320 |
-
show_desc = st.checkbox("Show attribute description")
|
321 |
-
if show_desc:
|
322 |
-
try:
|
323 |
-
label, desc = get_data_dict(selected_col.strip())
|
324 |
-
markdown = f"""
|
325 |
-
**{label}**: {desc}
|
326 |
-
"""
|
327 |
-
st.markdown(markdown)
|
328 |
-
except:
|
329 |
-
st.warning("No description available for selected attribute")
|
330 |
-
|
331 |
-
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5, row2_col6 = st.columns(
|
332 |
-
[0.6, 0.68, 0.7, 0.7, 1.5, 0.8]
|
333 |
-
)
|
334 |
-
|
335 |
-
palettes = cm.list_colormaps()
|
336 |
-
with row2_col1:
|
337 |
-
palette = st.selectbox("Color palette", palettes, index=palettes.index("Blues"))
|
338 |
-
with row2_col2:
|
339 |
-
n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
|
340 |
-
with row2_col3:
|
341 |
-
show_nodata = st.checkbox("Show nodata areas", value=True)
|
342 |
-
with row2_col4:
|
343 |
-
show_3d = st.checkbox("Show 3D view", value=False)
|
344 |
-
with row2_col5:
|
345 |
-
if show_3d:
|
346 |
-
elev_scale = st.slider(
|
347 |
-
"Elevation scale", min_value=1, max_value=1000000, value=1, step=10
|
348 |
-
)
|
349 |
-
with row2_col6:
|
350 |
-
st.info("Press Ctrl and move the left mouse button.")
|
351 |
-
else:
|
352 |
-
elev_scale = 1
|
353 |
-
|
354 |
-
gdf = join_attributes(gdf, inventory_df, scale.lower())
|
355 |
-
gdf_null = select_null(gdf, selected_col)
|
356 |
-
gdf = select_non_null(gdf, selected_col)
|
357 |
-
gdf = gdf.sort_values(by=selected_col, ascending=True)
|
358 |
-
|
359 |
-
colors = cm.get_palette(palette, n_colors)
|
360 |
-
colors = [hex_to_rgb(c) for c in colors]
|
361 |
-
|
362 |
-
for i, ind in enumerate(gdf.index):
|
363 |
-
index = int(i / (len(gdf) / len(colors)))
|
364 |
-
if index >= len(colors):
|
365 |
-
index = len(colors) - 1
|
366 |
-
gdf.loc[ind, "R"] = colors[index][0]
|
367 |
-
gdf.loc[ind, "G"] = colors[index][1]
|
368 |
-
gdf.loc[ind, "B"] = colors[index][2]
|
369 |
-
|
370 |
-
initial_view_state = pdk.ViewState(
|
371 |
-
latitude=40,
|
372 |
-
longitude=-100,
|
373 |
-
zoom=3,
|
374 |
-
max_zoom=16,
|
375 |
-
pitch=0,
|
376 |
-
bearing=0,
|
377 |
-
height=900,
|
378 |
-
width=None,
|
379 |
-
)
|
380 |
-
|
381 |
-
min_value = gdf[selected_col].min()
|
382 |
-
max_value = gdf[selected_col].max()
|
383 |
-
color = "color"
|
384 |
-
# color_exp = f"[({selected_col}-{min_value})/({max_value}-{min_value})*255, 0, 0]"
|
385 |
-
color_exp = f"[R, G, B]"
|
386 |
-
|
387 |
-
geojson = pdk.Layer(
|
388 |
-
"GeoJsonLayer",
|
389 |
-
gdf,
|
390 |
-
pickable=True,
|
391 |
-
opacity=0.5,
|
392 |
-
stroked=True,
|
393 |
-
filled=True,
|
394 |
-
extruded=show_3d,
|
395 |
-
wireframe=True,
|
396 |
-
get_elevation=f"{selected_col}",
|
397 |
-
elevation_scale=elev_scale,
|
398 |
-
# get_fill_color="color",
|
399 |
-
get_fill_color=color_exp,
|
400 |
-
get_line_color=[0, 0, 0],
|
401 |
-
get_line_width=2,
|
402 |
-
line_width_min_pixels=1,
|
403 |
-
)
|
404 |
-
|
405 |
-
geojson_null = pdk.Layer(
|
406 |
-
"GeoJsonLayer",
|
407 |
-
gdf_null,
|
408 |
-
pickable=True,
|
409 |
-
opacity=0.2,
|
410 |
-
stroked=True,
|
411 |
-
filled=True,
|
412 |
-
extruded=False,
|
413 |
-
wireframe=True,
|
414 |
-
# get_elevation="properties.ALAND/100000",
|
415 |
-
# get_fill_color="color",
|
416 |
-
get_fill_color=[200, 200, 200],
|
417 |
-
get_line_color=[0, 0, 0],
|
418 |
-
get_line_width=2,
|
419 |
-
line_width_min_pixels=1,
|
420 |
-
)
|
421 |
-
|
422 |
-
# tooltip = {"text": "Name: {NAME}"}
|
423 |
-
|
424 |
-
# tooltip_value = f"<b>Value:</b> {median_listing_price}""
|
425 |
-
tooltip = {
|
426 |
-
"html": "<b>Name:</b> {NAME}<br><b>Value:</b> {"
|
427 |
-
+ selected_col
|
428 |
-
+ "}<br><b>Date:</b> "
|
429 |
-
+ selected_period
|
430 |
-
+ "",
|
431 |
-
"style": {"backgroundColor": "steelblue", "color": "white"},
|
432 |
-
}
|
433 |
-
|
434 |
-
layers = [geojson]
|
435 |
-
if show_nodata:
|
436 |
-
layers.append(geojson_null)
|
437 |
-
|
438 |
-
r = pdk.Deck(
|
439 |
-
layers=layers,
|
440 |
-
initial_view_state=initial_view_state,
|
441 |
-
map_style="light",
|
442 |
-
tooltip=tooltip,
|
443 |
-
)
|
444 |
-
|
445 |
-
row3_col1, row3_col2 = st.columns([6, 1])
|
446 |
-
|
447 |
-
with row3_col1:
|
448 |
-
st.pydeck_chart(r)
|
449 |
-
with row3_col2:
|
450 |
-
st.write(
|
451 |
-
cm.create_colormap(
|
452 |
-
palette,
|
453 |
-
label=selected_col.replace("_", " ").title(),
|
454 |
-
width=0.2,
|
455 |
-
height=3,
|
456 |
-
orientation="vertical",
|
457 |
-
vmin=min_value,
|
458 |
-
vmax=max_value,
|
459 |
-
font_size=10,
|
460 |
-
)
|
461 |
-
)
|
462 |
-
row4_col1, row4_col2, row4_col3 = st.columns([1, 2, 3])
|
463 |
-
with row4_col1:
|
464 |
-
show_data = st.checkbox("Show raw data")
|
465 |
-
with row4_col2:
|
466 |
-
show_cols = st.multiselect("Select columns", data_cols)
|
467 |
-
with row4_col3:
|
468 |
-
show_colormaps = st.checkbox("Preview all color palettes")
|
469 |
-
if show_colormaps:
|
470 |
-
st.write(cm.plot_colormaps(return_fig=True))
|
471 |
-
if show_data:
|
472 |
-
if scale == "National":
|
473 |
-
st.dataframe(gdf[["NAME", "GEOID"] + show_cols])
|
474 |
-
elif scale == "State":
|
475 |
-
st.dataframe(gdf[["NAME", "STUSPS"] + show_cols])
|
476 |
-
elif scale == "County":
|
477 |
-
st.dataframe(gdf[["NAME", "STATEFP", "COUNTYFP"] + show_cols])
|
478 |
-
elif scale == "Metro":
|
479 |
-
st.dataframe(gdf[["NAME", "CBSAFP"] + show_cols])
|
480 |
-
elif scale == "Zip":
|
481 |
-
st.dataframe(gdf[["GEOID10"] + show_cols])
|
482 |
-
|
483 |
-
|
484 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,32 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.title("About")
|
7 |
-
st.sidebar.info(
|
8 |
-
"""
|
9 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
10 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
11 |
-
"""
|
12 |
-
)
|
13 |
-
|
14 |
-
st.sidebar.title("Contact")
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
Qiusheng Wu: <https://wetlands.io>
|
18 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.title("Split-panel Map")
|
23 |
-
|
24 |
-
with st.expander("See source code"):
|
25 |
-
with st.echo():
|
26 |
-
m = leafmap.Map()
|
27 |
-
m.split_map(
|
28 |
-
left_layer='ESA WorldCover 2020 S2 FCC', right_layer='ESA WorldCover 2020'
|
29 |
-
)
|
30 |
-
m.add_legend(title='ESA Land Cover', builtin_legend='ESA_WorldCover')
|
31 |
-
|
32 |
-
m.to_streamlit(height=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,36 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.title("About")
|
7 |
-
st.sidebar.info(
|
8 |
-
"""
|
9 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
10 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
11 |
-
"""
|
12 |
-
)
|
13 |
-
|
14 |
-
st.sidebar.title("Contact")
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
Qiusheng Wu: <https://wetlands.io>
|
18 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.title("Heatmap")
|
23 |
-
|
24 |
-
with st.expander("See source code"):
|
25 |
-
with st.echo():
|
26 |
-
filepath = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv"
|
27 |
-
m = leafmap.Map(center=[40, -100], zoom=4, tiles="stamentoner")
|
28 |
-
m.add_heatmap(
|
29 |
-
filepath,
|
30 |
-
latitude="latitude",
|
31 |
-
longitude="longitude",
|
32 |
-
value="pop_max",
|
33 |
-
name="Heat map",
|
34 |
-
radius=20,
|
35 |
-
)
|
36 |
-
m.to_streamlit(height=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,42 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.title("About")
|
7 |
-
st.sidebar.info(
|
8 |
-
"""
|
9 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
10 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
11 |
-
"""
|
12 |
-
)
|
13 |
-
|
14 |
-
st.sidebar.title("Contact")
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
Qiusheng Wu: <https://wetlands.io>
|
18 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.title("Marker Cluster")
|
23 |
-
|
24 |
-
with st.expander("See source code"):
|
25 |
-
with st.echo():
|
26 |
-
|
27 |
-
m = leafmap.Map(center=[40, -100], zoom=4)
|
28 |
-
cities = 'https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv'
|
29 |
-
regions = 'https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_regions.geojson'
|
30 |
-
|
31 |
-
m.add_geojson(regions, layer_name='US Regions')
|
32 |
-
m.add_points_from_xy(
|
33 |
-
cities,
|
34 |
-
x="longitude",
|
35 |
-
y="latitude",
|
36 |
-
color_column='region',
|
37 |
-
icon_names=['gear', 'map', 'leaf', 'globe'],
|
38 |
-
spin=True,
|
39 |
-
add_legend=True,
|
40 |
-
)
|
41 |
-
|
42 |
-
m.to_streamlit(height=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,62 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.title("About")
|
7 |
-
st.sidebar.info(
|
8 |
-
"""
|
9 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
10 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
11 |
-
"""
|
12 |
-
)
|
13 |
-
|
14 |
-
st.sidebar.title("Contact")
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
Qiusheng Wu: <https://wetlands.io>
|
18 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
def app():
|
24 |
-
st.title("Search Basemaps")
|
25 |
-
st.markdown(
|
26 |
-
"""
|
27 |
-
This app is a demonstration of searching and loading basemaps from [xyzservices](https://github.com/geopandas/xyzservices) and [Quick Map Services (QMS)](https://github.com/nextgis/quickmapservices). Selecting from 1000+ basemaps with a few clicks.
|
28 |
-
"""
|
29 |
-
)
|
30 |
-
|
31 |
-
with st.expander("See demo"):
|
32 |
-
st.image("https://i.imgur.com/0SkUhZh.gif")
|
33 |
-
|
34 |
-
row1_col1, row1_col2 = st.columns([3, 1])
|
35 |
-
width = 800
|
36 |
-
height = 600
|
37 |
-
tiles = None
|
38 |
-
|
39 |
-
with row1_col2:
|
40 |
-
|
41 |
-
checkbox = st.checkbox("Search Quick Map Services (QMS)")
|
42 |
-
keyword = st.text_input("Enter a keyword to search and press Enter:")
|
43 |
-
empty = st.empty()
|
44 |
-
|
45 |
-
if keyword:
|
46 |
-
options = leafmap.search_xyz_services(keyword=keyword)
|
47 |
-
if checkbox:
|
48 |
-
options = options + leafmap.search_qms(keyword=keyword)
|
49 |
-
|
50 |
-
tiles = empty.multiselect("Select XYZ tiles to add to the map:", options)
|
51 |
-
|
52 |
-
with row1_col1:
|
53 |
-
m = leafmap.Map()
|
54 |
-
|
55 |
-
if tiles is not None:
|
56 |
-
for tile in tiles:
|
57 |
-
m.add_xyz_service(tile)
|
58 |
-
|
59 |
-
m.to_streamlit(width, height)
|
60 |
-
|
61 |
-
|
62 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,89 +0,0 @@
|
|
1 |
-
import ast
|
2 |
-
import streamlit as st
|
3 |
-
import leafmap.foliumap as leafmap
|
4 |
-
|
5 |
-
st.set_page_config(layout="wide")
|
6 |
-
|
7 |
-
st.sidebar.title("About")
|
8 |
-
st.sidebar.info(
|
9 |
-
"""
|
10 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
11 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
12 |
-
"""
|
13 |
-
)
|
14 |
-
|
15 |
-
st.sidebar.title("Contact")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Qiusheng Wu: <https://wetlands.io>
|
19 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
@st.cache
|
25 |
-
def get_layers(url):
|
26 |
-
options = leafmap.get_wms_layers(url)
|
27 |
-
return options
|
28 |
-
|
29 |
-
|
30 |
-
def app():
|
31 |
-
st.title("Web Map Service (WMS)")
|
32 |
-
st.markdown(
|
33 |
-
"""
|
34 |
-
This app is a demonstration of loading Web Map Service (WMS) layers. Simply enter the URL of the WMS service
|
35 |
-
in the text box below and press Enter to retrieve the layers. Go to https://apps.nationalmap.gov/services to find
|
36 |
-
some WMS URLs if needed.
|
37 |
-
"""
|
38 |
-
)
|
39 |
-
|
40 |
-
row1_col1, row1_col2 = st.columns([3, 1.3])
|
41 |
-
width = 800
|
42 |
-
height = 600
|
43 |
-
layers = None
|
44 |
-
|
45 |
-
with row1_col2:
|
46 |
-
|
47 |
-
esa_landcover = "https://services.terrascope.be/wms/v2"
|
48 |
-
url = st.text_input(
|
49 |
-
"Enter a WMS URL:", value="https://services.terrascope.be/wms/v2"
|
50 |
-
)
|
51 |
-
empty = st.empty()
|
52 |
-
|
53 |
-
if url:
|
54 |
-
options = get_layers(url)
|
55 |
-
|
56 |
-
default = None
|
57 |
-
if url == esa_landcover:
|
58 |
-
default = "WORLDCOVER_2020_MAP"
|
59 |
-
layers = empty.multiselect(
|
60 |
-
"Select WMS layers to add to the map:", options, default=default
|
61 |
-
)
|
62 |
-
add_legend = st.checkbox("Add a legend to the map", value=True)
|
63 |
-
if default == "WORLDCOVER_2020_MAP":
|
64 |
-
legend = str(leafmap.builtin_legends["ESA_WorldCover"])
|
65 |
-
else:
|
66 |
-
legend = ""
|
67 |
-
if add_legend:
|
68 |
-
legend_text = st.text_area(
|
69 |
-
"Enter a legend as a dictionary {label: color}",
|
70 |
-
value=legend,
|
71 |
-
height=200,
|
72 |
-
)
|
73 |
-
|
74 |
-
with row1_col1:
|
75 |
-
m = leafmap.Map(center=(36.3, 0), zoom=2)
|
76 |
-
|
77 |
-
if layers is not None:
|
78 |
-
for layer in layers:
|
79 |
-
m.add_wms_layer(
|
80 |
-
url, layers=layer, name=layer, attribution=" ", transparent=True
|
81 |
-
)
|
82 |
-
if add_legend and legend_text:
|
83 |
-
legend_dict = ast.literal_eval(legend_text)
|
84 |
-
m.add_legend(legend_dict=legend_dict)
|
85 |
-
|
86 |
-
m.to_streamlit(width, height)
|
87 |
-
|
88 |
-
|
89 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,108 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
import leafmap.colormaps as cm
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
st.sidebar.title("About")
|
9 |
-
st.sidebar.info(
|
10 |
-
"""
|
11 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
12 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
13 |
-
"""
|
14 |
-
)
|
15 |
-
|
16 |
-
st.sidebar.title("Contact")
|
17 |
-
st.sidebar.info(
|
18 |
-
"""
|
19 |
-
Qiusheng Wu: <https://wetlands.io>
|
20 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
21 |
-
"""
|
22 |
-
)
|
23 |
-
|
24 |
-
|
25 |
-
@st.cache
|
26 |
-
def load_cog_list():
|
27 |
-
print(os.getcwd())
|
28 |
-
in_txt = os.path.join(os.getcwd(), "data/cog_files.txt")
|
29 |
-
with open(in_txt) as f:
|
30 |
-
return [line.strip() for line in f.readlines()[1:]]
|
31 |
-
|
32 |
-
|
33 |
-
@st.cache
|
34 |
-
def get_palettes():
|
35 |
-
return list(cm.palettes.keys())
|
36 |
-
# palettes = dir(palettable.matplotlib)[:-16]
|
37 |
-
# return ["matplotlib." + p for p in palettes]
|
38 |
-
|
39 |
-
|
40 |
-
st.title("Visualize Raster Datasets")
|
41 |
-
st.markdown(
|
42 |
-
"""
|
43 |
-
An interactive web app for visualizing local raster datasets and Cloud Optimized GeoTIFF ([COG](https://www.cogeo.org)). The app was built using [streamlit](https://streamlit.io), [leafmap](https://leafmap.org), and [Titiler](https://developmentseed.org/titiler/).
|
44 |
-
|
45 |
-
|
46 |
-
"""
|
47 |
-
)
|
48 |
-
|
49 |
-
row1_col1, row1_col2 = st.columns([2, 1])
|
50 |
-
|
51 |
-
with row1_col1:
|
52 |
-
cog_list = load_cog_list()
|
53 |
-
cog = st.selectbox("Select a sample Cloud Opitmized GeoTIFF (COG)", cog_list)
|
54 |
-
|
55 |
-
with row1_col2:
|
56 |
-
empty = st.empty()
|
57 |
-
|
58 |
-
url = empty.text_input(
|
59 |
-
"Enter a HTTP URL to a Cloud Optimized GeoTIFF (COG)",
|
60 |
-
cog,
|
61 |
-
)
|
62 |
-
|
63 |
-
if url:
|
64 |
-
try:
|
65 |
-
options = leafmap.cog_bands(url)
|
66 |
-
except Exception as e:
|
67 |
-
st.error(e)
|
68 |
-
if len(options) > 3:
|
69 |
-
default = options[:3]
|
70 |
-
else:
|
71 |
-
default = options[0]
|
72 |
-
bands = st.multiselect("Select bands to display", options, default=options)
|
73 |
-
|
74 |
-
if len(bands) == 1 or len(bands) == 3:
|
75 |
-
pass
|
76 |
-
else:
|
77 |
-
st.error("Please select one or three bands")
|
78 |
-
|
79 |
-
add_params = st.checkbox("Add visualization parameters")
|
80 |
-
if add_params:
|
81 |
-
vis_params = st.text_area("Enter visualization parameters", "{}")
|
82 |
-
else:
|
83 |
-
vis_params = {}
|
84 |
-
|
85 |
-
if len(vis_params) > 0:
|
86 |
-
try:
|
87 |
-
vis_params = eval(vis_params)
|
88 |
-
except Exception as e:
|
89 |
-
st.error(
|
90 |
-
f"Invalid visualization parameters. It should be a dictionary. Error: {e}"
|
91 |
-
)
|
92 |
-
vis_params = {}
|
93 |
-
|
94 |
-
submit = st.button("Submit")
|
95 |
-
|
96 |
-
m = leafmap.Map(latlon_control=False)
|
97 |
-
|
98 |
-
if submit:
|
99 |
-
if url:
|
100 |
-
try:
|
101 |
-
m.add_cog_layer(url, bands=bands, **vis_params)
|
102 |
-
except Exception as e:
|
103 |
-
with row1_col2:
|
104 |
-
st.error(e)
|
105 |
-
st.error("Work in progress. Try it again later.")
|
106 |
-
|
107 |
-
with row1_col1:
|
108 |
-
m.to_streamlit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,118 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import geopandas as gpd
|
3 |
-
import streamlit as st
|
4 |
-
|
5 |
-
st.set_page_config(layout="wide")
|
6 |
-
|
7 |
-
st.sidebar.title("About")
|
8 |
-
st.sidebar.info(
|
9 |
-
"""
|
10 |
-
Web App URL: <https://geospatial.streamlitapp.com>
|
11 |
-
GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
12 |
-
"""
|
13 |
-
)
|
14 |
-
|
15 |
-
st.sidebar.title("Contact")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Qiusheng Wu: <https://wetlands.io>
|
19 |
-
[GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
def save_uploaded_file(file_content, file_name):
|
25 |
-
"""
|
26 |
-
Save the uploaded file to a temporary directory
|
27 |
-
"""
|
28 |
-
import tempfile
|
29 |
-
import os
|
30 |
-
import uuid
|
31 |
-
|
32 |
-
_, file_extension = os.path.splitext(file_name)
|
33 |
-
file_id = str(uuid.uuid4())
|
34 |
-
file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}")
|
35 |
-
|
36 |
-
with open(file_path, "wb") as file:
|
37 |
-
file.write(file_content.getbuffer())
|
38 |
-
|
39 |
-
return file_path
|
40 |
-
|
41 |
-
|
42 |
-
def app():
|
43 |
-
|
44 |
-
st.title("Upload Vector Data")
|
45 |
-
|
46 |
-
row1_col1, row1_col2 = st.columns([2, 1])
|
47 |
-
width = 950
|
48 |
-
height = 600
|
49 |
-
|
50 |
-
with row1_col2:
|
51 |
-
|
52 |
-
backend = st.selectbox(
|
53 |
-
"Select a plotting backend", ["folium", "kepler.gl", "pydeck"], index=2
|
54 |
-
)
|
55 |
-
|
56 |
-
if backend == "folium":
|
57 |
-
import leafmap.foliumap as leafmap
|
58 |
-
elif backend == "kepler.gl":
|
59 |
-
import leafmap.kepler as leafmap
|
60 |
-
elif backend == "pydeck":
|
61 |
-
import leafmap.deck as leafmap
|
62 |
-
|
63 |
-
url = st.text_input(
|
64 |
-
"Enter a URL to a vector dataset",
|
65 |
-
"https://github.com/giswqs/streamlit-geospatial/raw/master/data/us_states.geojson",
|
66 |
-
)
|
67 |
-
|
68 |
-
data = st.file_uploader(
|
69 |
-
"Upload a vector dataset", type=["geojson", "kml", "zip", "tab"]
|
70 |
-
)
|
71 |
-
|
72 |
-
container = st.container()
|
73 |
-
|
74 |
-
if data or url:
|
75 |
-
if data:
|
76 |
-
file_path = save_uploaded_file(data, data.name)
|
77 |
-
layer_name = os.path.splitext(data.name)[0]
|
78 |
-
elif url:
|
79 |
-
file_path = url
|
80 |
-
layer_name = url.split("/")[-1].split(".")[0]
|
81 |
-
|
82 |
-
with row1_col1:
|
83 |
-
if file_path.lower().endswith(".kml"):
|
84 |
-
gpd.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw"
|
85 |
-
gdf = gpd.read_file(file_path, driver="KML")
|
86 |
-
else:
|
87 |
-
gdf = gpd.read_file(file_path)
|
88 |
-
lon, lat = leafmap.gdf_centroid(gdf)
|
89 |
-
if backend == "pydeck":
|
90 |
-
|
91 |
-
column_names = gdf.columns.values.tolist()
|
92 |
-
random_column = None
|
93 |
-
with container:
|
94 |
-
random_color = st.checkbox("Apply random colors", True)
|
95 |
-
if random_color:
|
96 |
-
random_column = st.selectbox(
|
97 |
-
"Select a column to apply random colors", column_names
|
98 |
-
)
|
99 |
-
|
100 |
-
m = leafmap.Map(center=(lat, lon))
|
101 |
-
m.add_gdf(gdf, random_color_column=random_column)
|
102 |
-
st.pydeck_chart(m)
|
103 |
-
|
104 |
-
else:
|
105 |
-
m = leafmap.Map(center=(lat, lon), draw_export=True)
|
106 |
-
m.add_gdf(gdf, layer_name=layer_name)
|
107 |
-
# m.add_vector(file_path, layer_name=layer_name)
|
108 |
-
if backend == "folium":
|
109 |
-
m.zoom_to_gdf(gdf)
|
110 |
-
m.to_streamlit(width=width, height=height)
|
111 |
-
|
112 |
-
else:
|
113 |
-
with row1_col1:
|
114 |
-
m = leafmap.Map()
|
115 |
-
st.pydeck_chart(m)
|
116 |
-
|
117 |
-
|
118 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -1,6 +0,0 @@
|
|
1 |
-
# enable nbserverproxy
|
2 |
-
jupyter serverextension enable --sys-prefix nbserverproxy
|
3 |
-
# streamlit launches at startup
|
4 |
-
mv streamlit_call.py ${NB_PYTHON_PREFIX}/lib/python*/site-packages/
|
5 |
-
# enable streamlit extension
|
6 |
-
jupyter serverextension enable --sys-prefix streamlit_call
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
line-length = 79
|
3 |
+
|
4 |
+
[tool.isort]
|
5 |
+
profile = "black"
|
6 |
+
line_length = 79
|
@@ -1,18 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
streamlit
|
5 |
-
|
6 |
-
|
7 |
-
streamlit-bokeh-events
|
8 |
-
streamlit-folium
|
9 |
-
streamlit-keplergl
|
10 |
-
# git+https://github.com/giswqs/leafmap
|
11 |
-
# git+https://github.com/giswqs/geemap
|
12 |
-
earthengine-api~=0.1.318
|
13 |
-
folium~=0.12.1.post1
|
14 |
-
geemap~=0.16.4
|
15 |
-
pandas~=1.4.3
|
16 |
-
shapely~=1.7.1
|
17 |
-
requests~=2.28.1
|
18 |
-
pydeck~=0.7.1
|
|
|
1 |
+
earthengine-api==0.1.331
|
2 |
+
folium==0.13.0
|
3 |
+
geemap==0.17.2
|
4 |
+
streamlit==1.14.1
|
5 |
+
streamlit_ext==0.1.4
|
6 |
+
streamlit-folium==0.7.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
extend-ignore =
|
3 |
+
SFS301 # Allow f-strings
|
4 |
+
T001 # Allow print statements
|
5 |
+
ISC001 # Allow for implictly concatenated string literals in one line
|
6 |
+
SFS101 # Allow percent operator in string
|