SynTalker / models /qp_vqvae /simpleVqvae.py
robinwitch's picture
update
1da48bb
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvNorm(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert(kernel_size % 2 == 1)
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = torch.nn.Conv1d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation,
bias=bias)
torch.nn.init.xavier_uniform_(
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class LinearNorm(torch.nn.Module):
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
torch.nn.init.xavier_uniform_(
self.linear_layer.weight,
gain=torch.nn.init.calculate_gain(w_init_gain))
def forward(self, x):
return self.linear_layer(x)
class Decoder(nn.Module):
def __init__(self, dim_pre=64, dim_out=45):
super(Decoder, self).__init__()
convolutions = []
for i in range(3):
conv_layer = nn.Sequential(
ConvNorm(dim_pre,
dim_pre,
kernel_size=5, stride=1,
padding=2,
dilation=1, w_init_gain='relu'),
nn.BatchNorm1d(dim_pre))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.linear_projection = LinearNorm(dim_pre, dim_out)
def forward(self, z, target=None):
z = F.interpolate(z.transpose(1, 2), scale_factor=2)
for conv in self.convolutions:
z = F.relu(conv(z))
z = z.transpose(1, 2) # (b, 240, 64)
decoder_output = self.linear_projection(z)
if target is None:
return decoder_output
else:
loss = F.l1_loss(decoder_output, target)
return loss, decoder_output
class Encoder(nn.Module):
'''
reference from: https://github.com/bshall/VectorQuantizedCPC/blob/master/model.py
'''
def __init__(self, in_channels, channels, n_embeddings, z_dim, c_dim):
super(Encoder, self).__init__()
self.conv = nn.Conv1d(in_channels, channels, 4, 2, 1, bias=False) # T // 2
# self.conv = nn.Conv1d(in_channels, channels, 3, 1, 1, bias=False) # T
self.encoder = nn.Sequential(
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, channels, bias=False),
nn.LayerNorm(channels),
nn.ReLU(True),
nn.Linear(channels, z_dim),
)
self.codebook = VQEmbeddingEMA(n_embeddings, z_dim)
self.rnn = nn.LSTM(z_dim, c_dim, batch_first=True)
def encode(self, mel):
z = self.conv(mel)
z_beforeVQ = self.encoder(z.transpose(1, 2))
z, r, indices = self.codebook.encode(z_beforeVQ)
c, _ = self.rnn(z)
return z, c, z_beforeVQ, indices
def forward(self, mels):
z = self.conv(mels.float()) # (bz, 80, 128) -> (bz, 512, 128/2)
z_beforeVQ = self.encoder(z.transpose(1, 2)) # (bz, 512, 128/2) -> (bz, 128/2, 512) -> (bz, 128/2, 64)
z, r, loss, perplexity = self.codebook(z_beforeVQ) # z: (bz, 128/2, 64)
z, r, indices = self.codebook.encode(z_beforeVQ)
c, _ = self.rnn(z) # (64, 128/2, 64) -> (64, 128/2, 256)
return z, c, z_beforeVQ, loss, perplexity
class VQEmbeddingEMA(nn.Module):
'''
reference from: https://github.com/bshall/VectorQuantizedCPC/blob/master/model.py
'''
def __init__(self, n_embeddings, embedding_dim, commitment_cost=2, decay=0.9999, epsilon=1e-7):
super(VQEmbeddingEMA, self).__init__()
self.commitment_cost = commitment_cost
self.decay = decay
self.epsilon = epsilon
init_bound = 1 / 512
embedding = torch.Tensor(n_embeddings, embedding_dim)
embedding.uniform_(-init_bound, init_bound)
self.register_buffer("embedding", embedding) # only change during forward
self.register_buffer("ema_count", torch.zeros(n_embeddings))
self.register_buffer("ema_weight", self.embedding.clone())
def encode(self, x):
M, D = self.embedding.size()
x_flat = x.detach().reshape(-1, D)
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
torch.sum(x_flat ** 2, dim=1, keepdim=True),
x_flat, self.embedding.t(),
alpha=-2.0, beta=1.0)
indices = torch.argmin(distances.float(), dim=-1)
quantized = F.embedding(indices, self.embedding)
quantized = quantized.view_as(x)
residual = x - quantized
return quantized, residual, indices.view(x.size(0), x.size(1))
def forward(self, x):
M, D = self.embedding.size()
x_flat = x.detach().reshape(-1, D)
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
torch.sum(x_flat ** 2, dim=1, keepdim=True),
x_flat, self.embedding.t(),
alpha=-2.0, beta=1.0) # calculate the distance between each ele in embedding and x
indices = torch.argmin(distances.float(), dim=-1)
encodings = F.one_hot(indices, M).float()
quantized = F.embedding(indices, self.embedding)
quantized = quantized.view_as(x)
if self.training: # EMA based codebook learning
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)
n = torch.sum(self.ema_count)
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n
dw = torch.matmul(encodings.t(), x_flat)
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)
e_latent_loss = F.mse_loss(x, quantized.detach())
loss = self.commitment_cost * e_latent_loss
residual = x - quantized
quantized = x + (quantized - x).detach()
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
return quantized, residual, loss, perplexity
class simpleVQVAE(nn.Module):
def __init__(self):
super(simpleVQVAE, self).__init__()
self.encoder = Encoder(in_channels=15 * 3, channels=512, n_embeddings=512, z_dim=64, c_dim=256)
self.decoder = Decoder(dim_pre=64, dim_out=45)
def encode(self,x):
z, _, _, indices = self.encoder.encode(x.transpose(1, 2))
return [indices]
def forward(self, x):
z, c, z_beforeVQ, loss_vq, perplexity = self.encoder(x.transpose(1, 2))
loss_recon, output = self.decoder(z, x)
return output, loss_vq + loss_recon, perplexity
if __name__ == '__main__':
'''
cd codebook/
python -m models.simpleVqvae
'''
# model = Encoder(in_channels=80, channels=512, n_embeddings=512, z_dim=64, c_dim=256)
# x = torch.rand(2, 80, 128)
# z, c, z_beforeVQ, loss, perplexity = model(x)
'''
z: (2, 64, 64)
c: (2, 64, 256)
z_beforeVQ: (2, 64, 64)
loss
perplexity
'''
model = Encoder(in_channels=15 * 3, channels=512, n_embeddings=512, z_dim=64, c_dim=256)
model2 = Decoder(dim_pre=64, dim_out=45)
x = torch.rand(2, 240, 15 * 3)
z, c, z_beforeVQ, loss, perplexity = model(x.transpose(1, 2))
pdb.set_trace()
loss, output = model2(z, x)