Spaces:
Configuration error
Configuration error
| // Copyright (c) Facebook, Inc. and its affiliates. | |
| // @lint-ignore-every CLANGTIDY | |
| // This is an example code that demonstrates how to run inference | |
| // with a torchscript format Mask R-CNN model exported by ./export_model.py | |
| // using export method=tracing, caffe2_tracing & scripting. | |
| // only needed for export_method=tracing | |
| // @fb-only: #include <torchvision/csrc/vision.h> | |
| using namespace std; | |
| c10::IValue get_caffe2_tracing_inputs(cv::Mat& img, c10::Device device) { | |
| const int height = img.rows; | |
| const int width = img.cols; | |
| // FPN models require divisibility of 32. | |
| // Tracing mode does padding inside the graph, but caffe2_tracing does not. | |
| assert(height % 32 == 0 && width % 32 == 0); | |
| const int channels = 3; | |
| auto input = | |
| torch::from_blob(img.data, {1, height, width, channels}, torch::kUInt8); | |
| // NHWC to NCHW | |
| input = input.to(device, torch::kFloat).permute({0, 3, 1, 2}).contiguous(); | |
| std::array<float, 3> im_info_data{height * 1.0f, width * 1.0f, 1.0f}; | |
| auto im_info = | |
| torch::from_blob(im_info_data.data(), {1, 3}).clone().to(device); | |
| return std::make_tuple(input, im_info); | |
| } | |
| c10::IValue get_tracing_inputs(cv::Mat& img, c10::Device device) { | |
| const int height = img.rows; | |
| const int width = img.cols; | |
| const int channels = 3; | |
| auto input = | |
| torch::from_blob(img.data, {height, width, channels}, torch::kUInt8); | |
| // HWC to CHW | |
| input = input.to(device, torch::kFloat).permute({2, 0, 1}).contiguous(); | |
| return input; | |
| } | |
| // create a Tuple[Dict[str, Tensor]] which is the input type of scripted model | |
| c10::IValue get_scripting_inputs(cv::Mat& img, c10::Device device) { | |
| const int height = img.rows; | |
| const int width = img.cols; | |
| const int channels = 3; | |
| auto img_tensor = | |
| torch::from_blob(img.data, {height, width, channels}, torch::kUInt8); | |
| // HWC to CHW | |
| img_tensor = | |
| img_tensor.to(device, torch::kFloat).permute({2, 0, 1}).contiguous(); | |
| auto dic = c10::Dict<std::string, torch::Tensor>(); | |
| dic.insert("image", img_tensor); | |
| return std::make_tuple(dic); | |
| } | |
| c10::IValue | |
| get_inputs(std::string export_method, cv::Mat& img, c10::Device device) { | |
| // Given an image, create inputs in the format required by the model. | |
| if (export_method == "tracing") | |
| return get_tracing_inputs(img, device); | |
| if (export_method == "caffe2_tracing") | |
| return get_caffe2_tracing_inputs(img, device); | |
| if (export_method == "scripting") | |
| return get_scripting_inputs(img, device); | |
| abort(); | |
| } | |
| struct MaskRCNNOutputs { | |
| at::Tensor pred_boxes, pred_classes, pred_masks, scores; | |
| int num_instances() const { | |
| return pred_boxes.sizes()[0]; | |
| } | |
| }; | |
| MaskRCNNOutputs get_outputs(std::string export_method, c10::IValue outputs) { | |
| // Given outputs of the model, extract tensors from it to turn into a | |
| // common MaskRCNNOutputs format. | |
| if (export_method == "tracing") { | |
| auto out_tuple = outputs.toTuple()->elements(); | |
| // They are ordered alphabetically by their field name in Instances | |
| return MaskRCNNOutputs{ | |
| out_tuple[0].toTensor(), | |
| out_tuple[1].toTensor(), | |
| out_tuple[2].toTensor(), | |
| out_tuple[3].toTensor()}; | |
| } | |
| if (export_method == "caffe2_tracing") { | |
| auto out_tuple = outputs.toTuple()->elements(); | |
| // A legacy order used by caffe2 models | |
| return MaskRCNNOutputs{ | |
| out_tuple[0].toTensor(), | |
| out_tuple[2].toTensor(), | |
| out_tuple[3].toTensor(), | |
| out_tuple[1].toTensor()}; | |
| } | |
| if (export_method == "scripting") { | |
| // With the ScriptableAdapter defined in export_model.py, the output is | |
| // List[Dict[str, Any]]. | |
| auto out_dict = outputs.toList().get(0).toGenericDict(); | |
| return MaskRCNNOutputs{ | |
| out_dict.at("pred_boxes").toTensor(), | |
| out_dict.at("pred_classes").toTensor(), | |
| out_dict.at("pred_masks").toTensor(), | |
| out_dict.at("scores").toTensor()}; | |
| } | |
| abort(); | |
| } | |
| int main(int argc, const char* argv[]) { | |
| if (argc != 4) { | |
| cerr << R"xx( | |
| Usage: | |
| ./torchscript_mask_rcnn model.ts input.jpg EXPORT_METHOD | |
| EXPORT_METHOD can be "tracing", "caffe2_tracing" or "scripting". | |
| )xx"; | |
| return 1; | |
| } | |
| std::string image_file = argv[2]; | |
| std::string export_method = argv[3]; | |
| assert( | |
| export_method == "caffe2_tracing" || export_method == "tracing" || | |
| export_method == "scripting"); | |
| torch::jit::FusionStrategy strat = {{torch::jit::FusionBehavior::DYNAMIC, 1}}; | |
| torch::jit::setFusionStrategy(strat); | |
| torch::autograd::AutoGradMode guard(false); | |
| auto module = torch::jit::load(argv[1]); | |
| assert(module.buffers().size() > 0); | |
| // Assume that the entire model is on the same device. | |
| // We just put input to this device. | |
| auto device = (*begin(module.buffers())).device(); | |
| cv::Mat input_img = cv::imread(image_file, cv::IMREAD_COLOR); | |
| auto inputs = get_inputs(export_method, input_img, device); | |
| // Run the network | |
| auto output = module.forward({inputs}); | |
| if (device.is_cuda()) | |
| c10::cuda::getCurrentCUDAStream().synchronize(); | |
| // run 3 more times to benchmark | |
| int N_benchmark = 3, N_warmup = 1; | |
| auto start_time = chrono::high_resolution_clock::now(); | |
| for (int i = 0; i < N_benchmark + N_warmup; ++i) { | |
| if (i == N_warmup) | |
| start_time = chrono::high_resolution_clock::now(); | |
| output = module.forward({inputs}); | |
| if (device.is_cuda()) | |
| c10::cuda::getCurrentCUDAStream().synchronize(); | |
| } | |
| auto end_time = chrono::high_resolution_clock::now(); | |
| auto ms = chrono::duration_cast<chrono::microseconds>(end_time - start_time) | |
| .count(); | |
| cout << "Latency (should vary with different inputs): " | |
| << ms * 1.0 / 1e6 / N_benchmark << " seconds" << endl; | |
| // Parse Mask R-CNN outputs | |
| auto rcnn_outputs = get_outputs(export_method, output); | |
| cout << "Number of detected objects: " << rcnn_outputs.num_instances() | |
| << endl; | |
| cout << "pred_boxes: " << rcnn_outputs.pred_boxes.toString() << " " | |
| << rcnn_outputs.pred_boxes.sizes() << endl; | |
| cout << "scores: " << rcnn_outputs.scores.toString() << " " | |
| << rcnn_outputs.scores.sizes() << endl; | |
| cout << "pred_classes: " << rcnn_outputs.pred_classes.toString() << " " | |
| << rcnn_outputs.pred_classes.sizes() << endl; | |
| cout << "pred_masks: " << rcnn_outputs.pred_masks.toString() << " " | |
| << rcnn_outputs.pred_masks.sizes() << endl; | |
| cout << rcnn_outputs.pred_boxes << endl; | |
| return 0; | |
| } | |