File size: 5,099 Bytes
493e780
 
ca30234
 
 
493e780
ca30234
493e780
 
 
 
 
 
b5eb0cf
 
493e780
 
 
 
 
 
 
 
 
 
 
 
 
 
b5eb0cf
493e780
 
b5eb0cf
493e780
 
b5eb0cf
493e780
50ab3df
b5eb0cf
493e780
ca30234
493e780
ca30234
493e780
 
ca30234
50ab3df
ca30234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493e780
 
 
ca30234
 
493e780
 
 
 
 
 
ca30234
493e780
ca30234
50ab3df
493e780
 
 
 
 
 
 
50ab3df
493e780
 
 
 
 
 
 
50ab3df
493e780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca30234
50ab3df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import cv2
import gradio as gr
import numpy as np
import random
import time

def tryon(person_img, garment_prompt, seed, randomize_seed):
    post_start_time = time.time()
    
    if person_img is None or garment_prompt.strip() == "":
        return None, None, "Empty image or prompt"
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    # Create a copy of the person image to overlay text
    result_img = person_img.copy()
    
    # Convert the image to OpenCV format (if needed)
    if len(result_img.shape) == 2:  # Convert grayscale to RGB
        result_img = cv2.cvtColor(result_img, cv2.COLOR_GRAY2RGB)
    
    # Set text position and properties
    text_position = (10, 30)
    font = cv2.FONT_HERSHEY_SIMPLEX
    font_scale = 1
    font_color = (0, 255, 0)  # Green color for the text
    thickness = 2

    # Overlay the garment description text on the image
    cv2.putText(result_img, f'Garment: {garment_prompt}', text_position, font, font_scale, font_color, thickness, cv2.LINE_AA)

    post_end_time = time.time()
    print(f"post time used: {post_end_time - post_start_time}")

    # Return the resulting image, used seed, and success message
    return result_img, seed, "Success"

MAX_SEED = 999999

example_path = os.path.join(os.path.dirname(__file__), 'assets')

human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]

css = """
#col-left {
    margin: 0 auto;
    max-width: 430px;
}
#col-mid {
    margin: 0 auto;
    max-width: 430px;
}
#col-right {
    margin: 0 auto;
    max-width: 430px;
}
#col-showcase {
    margin: 0 auto;
    max-width: 1100px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


with gr.Blocks(css=css) as Tryon:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 1.  Upload a person image ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id="col-mid"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 2. Enter a text prompt for the garment ⬇️
                </div>
            </div>
            """)
        with gr.Column(elem_id="col-right"):
            gr.HTML("""
            <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
                <div>
                Step 3. Press “Run” to get try-on results
                </div>
            </div>
            """)
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            imgs = gr.Image(label="Person image", sources='upload', type="numpy")
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=12,
                examples=human_list_path
            )
        with gr.Column(elem_id="col-mid"):
            garment_prompt = gr.Textbox(label="Garment text prompt", placeholder="Describe the garment...")
        with gr.Column(elem_id="col-right"):
            image_out = gr.Image(label="Result", show_share_button=False)
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Random seed", value=True)
            with gr.Row():
                seed_used = gr.Number(label="Seed used")
                result_info = gr.Text(label="Response")
            test_button = gr.Button(value="Run", elem_id="button")

    test_button.click(fn=tryon, inputs=[imgs, garment_prompt, seed, randomize_seed], outputs=[image_out, seed_used, result_info], concurrency_limit=40)

    with gr.Column(elem_id="col-showcase"):
        gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
            <div> </div>
            <br>
            <div>
            Virtual try-on examples in pairs of person and garment images
            </div>
        </div>
        """)
        show_case = gr.Examples(
            examples=[
                ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
                ["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
                ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
            ],
            inputs=[imgs, garment_prompt, image_out],
            label=None
        )

Tryon.launch()