Spaces:
Runtime error
Runtime error
Overhauled editing UI, output to gallery
Browse files- app.py +143 -108
- generate_videos.py +23 -153
app.py
CHANGED
@@ -1,33 +1,24 @@
|
|
1 |
import os
|
2 |
-
|
3 |
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
import numpy as np
|
10 |
-
|
11 |
from e4e.models.psp import pSp
|
12 |
from util import *
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
|
15 |
-
import os
|
16 |
-
import sys
|
17 |
import tempfile
|
18 |
-
import shutil
|
19 |
from argparse import Namespace
|
20 |
-
from pathlib import Path
|
21 |
import shutil
|
22 |
|
23 |
import dlib
|
24 |
import numpy as np
|
25 |
import torchvision.transforms as transforms
|
26 |
from torchvision import utils
|
27 |
-
from PIL import Image
|
28 |
|
29 |
from model.sg2_model import Generator
|
30 |
-
from generate_videos import generate_frames, video_from_interpolations,
|
31 |
|
32 |
model_dir = "models"
|
33 |
os.makedirs(model_dir, exist_ok=True)
|
@@ -120,7 +111,6 @@ class ImageEditor(object):
|
|
120 |
print("setup complete")
|
121 |
|
122 |
def get_style_list(self):
|
123 |
-
# style_list = ['all', 'list - enter below']
|
124 |
style_list = []
|
125 |
|
126 |
for key in self.generators:
|
@@ -146,26 +136,70 @@ class ImageEditor(object):
|
|
146 |
|
147 |
def get_generators_for_styles(self, output_styles, loop_styles=False):
|
148 |
|
149 |
-
# if
|
150 |
-
# styles = style_string.split(",")
|
151 |
-
# for style in styles:
|
152 |
-
# if style not in self.model_list:
|
153 |
-
# raise ValueError(f"Encountered style '{style}' in the input style list which is not an available option.")
|
154 |
-
# else:
|
155 |
-
# styles = style_checkbox_list
|
156 |
-
|
157 |
-
if "base" in output_styles: # always start with base if chosen
|
158 |
output_styles.insert(0, output_styles.pop(output_styles.index("base")))
|
159 |
if loop_styles:
|
160 |
output_styles.append(output_styles[0])
|
161 |
|
162 |
return [self.generators[style] for style in output_styles]
|
163 |
|
164 |
-
def
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
|
|
169 |
|
170 |
def predict(
|
171 |
self,
|
@@ -173,55 +207,57 @@ class ImageEditor(object):
|
|
173 |
output_styles, # Style checkbox options.
|
174 |
generate_video = False, # Generate a video instead of an output image
|
175 |
with_editing = False, # Apply latent space editing to the generated video
|
176 |
-
video_format = "mp4", # Choose gif to display in browser, mp4 for higher-quality downloadable video
|
177 |
loop_styles = False, # Loop back to the initial style
|
|
|
178 |
):
|
179 |
|
|
|
|
|
|
|
180 |
# @title Align image
|
181 |
-
out_dir =
|
182 |
-
out_path = out_dir / "out.jpg"
|
183 |
|
184 |
inverted_latent = self.invert_image(input)
|
185 |
generators = self.get_generators_for_styles(output_styles, loop_styles)
|
186 |
|
|
|
|
|
187 |
if not generate_video:
|
|
|
|
|
188 |
with torch.no_grad():
|
189 |
-
img_list = []
|
190 |
for g_ema in generators:
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
out_img = torch.cat(img_list, axis=0)
|
195 |
-
utils.save_image(out_img, out_path, nrow=int(np.sqrt(out_img.size(0))), normalize=True, scale_each=True, range=(-1, 1))
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
return self.generate_vid(generators, inverted_latent, out_dir,
|
200 |
-
|
201 |
-
def generate_vid(self, generators,
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
'unedited_frames': 0 if with_editing else 40 * (len(generators) - 1)
|
208 |
-
}
|
209 |
-
|
210 |
-
args = Namespace(**args)
|
211 |
with tempfile.TemporaryDirectory() as dirpath:
|
212 |
|
213 |
-
generate_frames(
|
214 |
-
video_from_interpolations(
|
215 |
|
216 |
-
gen_path =
|
217 |
-
out_path = out_dir
|
218 |
|
219 |
-
|
220 |
-
vid_to_gif(gen_path, out_dir, scale=256, fps=args.fps)
|
221 |
-
else:
|
222 |
-
shutil.copy2(gen_path, out_path)
|
223 |
|
224 |
-
return
|
225 |
|
226 |
def run_alignment(self, image_path):
|
227 |
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
@@ -236,12 +272,12 @@ class ImageEditor(object):
|
|
236 |
|
237 |
editor = ImageEditor()
|
238 |
|
239 |
-
def change_component_visibility(component_types, invert_choices):
|
240 |
|
241 |
-
|
242 |
-
|
243 |
|
244 |
-
|
245 |
|
246 |
# def group_visibility(visible):
|
247 |
# print("visible: ", visible)
|
@@ -258,60 +294,59 @@ with blocks:
|
|
258 |
gr.Markdown(
|
259 |
"For more information about the paper and code for training your own models (with examples OR text), see below."
|
260 |
)
|
261 |
-
|
262 |
with gr.Row():
|
|
|
263 |
|
264 |
-
with gr.Column():
|
265 |
-
input_img = gr.inputs.Image(type="filepath", label="Input image")
|
266 |
style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!")
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
loop_styles = gr.inputs.Checkbox(default=True, label="Loop video back to the initial style?", visible=False)
|
271 |
-
edit_choice = gr.inputs.Checkbox(default=False, label="With Editing?", visible=False)
|
272 |
-
vid_format_choice = gr.inputs.Radio(choices=["gif", "mp4"], type="value", default='mp4', label="Video Format", visible=False)
|
273 |
-
|
274 |
-
# img_button = gr.Button("Edit Image")
|
275 |
-
# vid_button = gr.Button("Generate Video")
|
276 |
-
img_button = gr.Button("Edit Image")
|
277 |
-
vid_button = gr.Button("Generate Video", visible=False)
|
278 |
-
|
279 |
-
with gr.Column():
|
280 |
-
img_output = gr.outputs.Image(type="file")
|
281 |
-
vid_output = gr.outputs.Video(visible=False)
|
282 |
-
|
283 |
-
visibility_fn = change_component_visibility(component_types=[gr.Checkbox, gr.Radio, gr.Video, gr.Button, gr.Image, gr.Button, gr.Checkbox],
|
284 |
-
invert_choices=[False, False, False, False, True, True, False])
|
285 |
-
|
286 |
-
video_choice.change(fn=visibility_fn, inputs=video_choice, outputs=[edit_choice, vid_format_choice, vid_output, vid_button, img_output, img_button])
|
287 |
-
# video_choice.change(fn=group_visibility, inputs=video_choice, outputs=video_options_group)
|
288 |
-
img_button.click(fn=editor.edit_image, inputs=[input_img, style_choice], outputs=img_output)
|
289 |
-
vid_button.click(fn=editor.edit_video, inputs=[input_img, style_choice, edit_choice, vid_format_choice, loop_styles], outputs=vid_output)
|
290 |
-
|
291 |
-
# with gr.Row():
|
292 |
-
# input_img = gr.inputs.Image(type="filepath", label="Input image")
|
293 |
-
# style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!")
|
294 |
-
|
295 |
-
# with gr.Tabs():
|
296 |
-
# with gr.TabItem("Edit Images"):
|
297 |
-
# with gr.Column():
|
298 |
-
# img_button = gr.Button("Edit Image")
|
299 |
-
# with gr.Column():
|
300 |
-
# img_output = gr.outputs.Image(type="file", label="Output Image")
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
|
317 |
gr.Markdown(article)
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
7 |
from e4e.models.psp import pSp
|
8 |
from util import *
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
|
|
11 |
import tempfile
|
|
|
12 |
from argparse import Namespace
|
|
|
13 |
import shutil
|
14 |
|
15 |
import dlib
|
16 |
import numpy as np
|
17 |
import torchvision.transforms as transforms
|
18 |
from torchvision import utils
|
|
|
19 |
|
20 |
from model.sg2_model import Generator
|
21 |
+
from generate_videos import generate_frames, video_from_interpolations, project_code_by_edit_name
|
22 |
|
23 |
model_dir = "models"
|
24 |
os.makedirs(model_dir, exist_ok=True)
|
|
|
111 |
print("setup complete")
|
112 |
|
113 |
def get_style_list(self):
|
|
|
114 |
style_list = []
|
115 |
|
116 |
for key in self.generators:
|
|
|
136 |
|
137 |
def get_generators_for_styles(self, output_styles, loop_styles=False):
|
138 |
|
139 |
+
if "base" in output_styles: # always start with base if chosen
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
output_styles.insert(0, output_styles.pop(output_styles.index("base")))
|
141 |
if loop_styles:
|
142 |
output_styles.append(output_styles[0])
|
143 |
|
144 |
return [self.generators[style] for style in output_styles]
|
145 |
|
146 |
+
def _pack_edits(func):
|
147 |
+
def inner(self,
|
148 |
+
edit_type_choice,
|
149 |
+
pose_slider,
|
150 |
+
smile_slider,
|
151 |
+
gender_slider,
|
152 |
+
age_slider,
|
153 |
+
hair_slider,
|
154 |
+
src_text_styleclip,
|
155 |
+
tar_text_styleclip,
|
156 |
+
alpha_styleclip,
|
157 |
+
beta_styleclip,
|
158 |
+
*args):
|
159 |
+
|
160 |
+
edit_choices = {"edit_type": edit_type_choice,
|
161 |
+
"pose": pose_slider,
|
162 |
+
"smile": smile_slider,
|
163 |
+
"gender": gender_slider,
|
164 |
+
"age": age_slider,
|
165 |
+
"hair": hair_slider,
|
166 |
+
"src_text": src_text_styleclip,
|
167 |
+
"tar_text": tar_text_styleclip,
|
168 |
+
"alpha": alpha_styleclip,
|
169 |
+
"beta": beta_styleclip}
|
170 |
+
|
171 |
+
return func(self, *args, edit_choices)
|
172 |
+
|
173 |
+
return inner
|
174 |
+
|
175 |
+
def get_target_latents(self, source_latent, edit_choices, generators):
|
176 |
+
|
177 |
+
np_source_latent = source_latent.squeeze(0).cpu().detach().numpy()
|
178 |
+
|
179 |
+
target_latents = []
|
180 |
+
|
181 |
+
if edit_choices["edit_type"] == "InterFaceGAN":
|
182 |
+
for attribute_name in ["pose", "smile", "gender", "age", "hair"]:
|
183 |
+
strength = edit_choices[attribute_name]
|
184 |
+
if strength != 0.0:
|
185 |
+
target_latents.append(project_code_by_edit_name(np_source_latent, attribute_name, strength))
|
186 |
+
|
187 |
+
elif edit_choices["edit_type"] == "StyleCLIP":
|
188 |
+
pass
|
189 |
+
|
190 |
+
# if edit type is none or if all slides were set to 0
|
191 |
+
if not target_latents:
|
192 |
+
target_latents = [source_latent, ] * (len(generators) - 1)
|
193 |
+
|
194 |
+
return target_latents
|
195 |
+
|
196 |
+
@_pack_edits
|
197 |
+
def edit_image(self, input, output_styles, edit_choices):
|
198 |
+
return self.predict(input, output_styles, edit_choices)
|
199 |
|
200 |
+
@_pack_edits
|
201 |
+
def edit_video(self, input, output_styles, loop_styles, edit_choices):
|
202 |
+
return self.predict(input, output_styles, True, loop_styles, edit_choices)
|
203 |
|
204 |
def predict(
|
205 |
self,
|
|
|
207 |
output_styles, # Style checkbox options.
|
208 |
generate_video = False, # Generate a video instead of an output image
|
209 |
with_editing = False, # Apply latent space editing to the generated video
|
|
|
210 |
loop_styles = False, # Loop back to the initial style
|
211 |
+
edit_choices = None, # Optional dictionary with edit choice arguments
|
212 |
):
|
213 |
|
214 |
+
if edit_choices is None:
|
215 |
+
edit_choices = {"edit_type": "None"}
|
216 |
+
|
217 |
# @title Align image
|
218 |
+
out_dir = tempfile.mkdtemp()
|
|
|
219 |
|
220 |
inverted_latent = self.invert_image(input)
|
221 |
generators = self.get_generators_for_styles(output_styles, loop_styles)
|
222 |
|
223 |
+
target_latents = self.get_target_latents(inverted_latent, edit_choices, generators)
|
224 |
+
|
225 |
if not generate_video:
|
226 |
+
output_paths = []
|
227 |
+
|
228 |
with torch.no_grad():
|
|
|
229 |
for g_ema in generators:
|
230 |
+
latent_for_gen = random.choice(target_latents)
|
231 |
+
latent_for_gen = [torch.from_numpy(latent_for_gen).float().to(self.device)]
|
|
|
|
|
|
|
232 |
|
233 |
+
img, _ = g_ema(latent_for_gen, input_is_latent=True, truncation=1, randomize_noise=False)
|
234 |
+
|
235 |
+
output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg")
|
236 |
+
utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1))
|
237 |
+
|
238 |
+
output_paths.append(output_path)
|
239 |
+
|
240 |
+
return output_paths
|
241 |
|
242 |
+
return self.generate_vid(generators, inverted_latent, out_dir, with_editing)
|
243 |
+
|
244 |
+
def generate_vid(self, generators, source_latent, target_latents, out_dir):
|
245 |
+
|
246 |
+
fps = 24
|
247 |
+
|
248 |
+
np_latent = source_latent.squeeze(0).cpu().detach().numpy()
|
249 |
+
|
|
|
|
|
|
|
|
|
250 |
with tempfile.TemporaryDirectory() as dirpath:
|
251 |
|
252 |
+
generate_frames(np_latent, target_latents, generators, dirpath)
|
253 |
+
video_from_interpolations(fps, dirpath)
|
254 |
|
255 |
+
gen_path = os.path.join(dirpath, "out.mp4")
|
256 |
+
out_path = os.path.join(out_dir, "out.mp4")
|
257 |
|
258 |
+
shutil.copy2(gen_path, out_path)
|
|
|
|
|
|
|
259 |
|
260 |
+
return out_path
|
261 |
|
262 |
def run_alignment(self, image_path):
|
263 |
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
|
|
272 |
|
273 |
editor = ImageEditor()
|
274 |
|
275 |
+
# def change_component_visibility(component_types, invert_choices):
|
276 |
|
277 |
+
# def visibility_impl(visible):
|
278 |
+
# return [component_types[idx].update(visible=visible ^ invert_choices[idx]) for idx in range(len(component_types))]
|
279 |
|
280 |
+
# return visibility_impl
|
281 |
|
282 |
# def group_visibility(visible):
|
283 |
# print("visible: ", visible)
|
|
|
294 |
gr.Markdown(
|
295 |
"For more information about the paper and code for training your own models (with examples OR text), see below."
|
296 |
)
|
297 |
+
|
298 |
with gr.Row():
|
299 |
+
input_img = gr.inputs.Image(type="filepath", label="Input image")
|
300 |
|
301 |
+
with gr.Column():
|
|
|
302 |
style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!")
|
303 |
|
304 |
+
editing_type_choice = gr.Radio(choices=["None", "InterFaceGAN", "StyleCLIP"], label="Choose latent space editing option. For InterFaceGAN and StyleCLIP, set the options below:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
with gr.Tabs():
|
307 |
+
with gr.TabItem("InterFaceGAN Editing Options"):
|
308 |
+
gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.")
|
309 |
+
gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together")
|
310 |
+
|
311 |
+
pose_slider = gr.Slider(label="Pose", minimum=-1, maximum=1, value=0, step=0.02)
|
312 |
+
smile_slider = gr.Slider(label="Smile", minimum=-1, maximum=1, value=0, step=0.02)
|
313 |
+
gender_slider = gr.Slider(label="Perceived Gender", minimum=-1, maximum=1, value=0, step=0.02)
|
314 |
+
age_slider = gr.Slider(label="Age", minimum=-1, maximum=1, value=0, step=0.02)
|
315 |
+
hair_slider = gr.Slider(label="Hair Length", minimum=-1, maximum=1, value=0, step=0.02)
|
316 |
+
|
317 |
+
ig_edit_choices = [pose_slider, smile_slider, gender_slider, age_slider, hair_slider]
|
318 |
+
|
319 |
+
with gr.TabItem("StyleCLIP Editing Options"):
|
320 |
+
gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.")
|
321 |
+
gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together")
|
322 |
|
323 |
+
src_text_styleclip = gr.Textbox(label="Source text")
|
324 |
+
tar_text_styleclip = gr.Textbox(label="Target text")
|
325 |
+
|
326 |
+
alpha_styleclip = gr.Slider(label="Edit strength", minimum=-10, maximum=10, value=0, step=0.1)
|
327 |
+
beta_styleclip = gr.Slider(label="Disentanglement Threshold", minimum=0.08, maximum=0.3, value=0.14, step=0.01)
|
328 |
+
|
329 |
+
sc_edit_choices = [src_text_styleclip, tar_text_styleclip, alpha_styleclip, beta_styleclip]
|
330 |
+
|
331 |
+
with gr.Tabs():
|
332 |
+
with gr.TabItem("Edit Images"):
|
333 |
+
with gr.Column():
|
334 |
+
img_button = gr.Button("Edit Image")
|
335 |
+
with gr.Column():
|
336 |
+
img_output = gr.Gallery(label="Output Images")
|
337 |
+
|
338 |
+
with gr.TabItem("Create Video"):
|
339 |
+
with gr.Row():
|
340 |
+
with gr.Column():
|
341 |
+
vid_button = gr.Button("Generate Video")
|
342 |
+
loop_styles = gr.inputs.Checkbox(default=True, label="Loop video back to the initial style?")
|
343 |
+
|
344 |
+
with gr.Column():
|
345 |
+
vid_output = gr.outputs.Video(label="Output Video")
|
346 |
+
|
347 |
+
edit_inputs = [editing_type_choice] + ig_edit_choices + sc_edit_choices
|
348 |
+
img_button.click(fn=editor.edit_image, inputs=edit_inputs + [input_img, style_choice], outputs=img_output)
|
349 |
+
vid_button.click(fn=editor.edit_video, inputs=edit_inputs + [input_img, style_choice, loop_styles], outputs=vid_output)
|
350 |
|
351 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
|
352 |
gr.Markdown(article)
|
generate_videos.py
CHANGED
@@ -35,12 +35,12 @@ import copy
|
|
35 |
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
|
36 |
|
37 |
SUGGESTED_DISTANCES = {
|
38 |
-
"pose":
|
39 |
-
"smile":
|
40 |
-
"age":
|
41 |
-
"gender":
|
42 |
-
"hair_length":
|
43 |
-
"beard":
|
44 |
}
|
45 |
|
46 |
def project_code(latent_code, boundary, distance=3.0):
|
@@ -50,21 +50,26 @@ def project_code(latent_code, boundary, distance=3.0):
|
|
50 |
|
51 |
return latent_code + distance * boundary
|
52 |
|
53 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
interpolate_func = interpolate_with_boundaries # default
|
60 |
-
if args.target_latents: # if provided with targets
|
61 |
-
interpolate_func = interpolate_with_target_latents
|
62 |
-
if args.unedited_frames: # if only interpolating through generators
|
63 |
-
interpolate_func = duplicate_latent
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
segments = len(g_ema_list) - 1
|
|
|
68 |
if segments:
|
69 |
segment_length = len(latents) / segments
|
70 |
|
@@ -96,50 +101,15 @@ def generate_frames(args, source_latent, g_ema_list, output_dir):
|
|
96 |
def interpolate_forward_backward(source_latent, target_latent, alphas):
|
97 |
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
|
98 |
latents_backward = latents_forward[::-1] # interpolate from target to source
|
99 |
-
return latents_forward + [target_latent] *
|
100 |
|
101 |
-
def
|
102 |
-
return [source_latent for _ in range(args.unedited_frames)]
|
103 |
-
|
104 |
-
def interpolate_with_boundaries(args, source_latent, alphas):
|
105 |
-
edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length']
|
106 |
-
|
107 |
-
# interpolate latent codes with all targets
|
108 |
-
|
109 |
-
print("Interpolating latent codes...")
|
110 |
-
|
111 |
-
boundary_dir = Path(os.path.abspath(__file__)).parents[0].joinpath("editing", "interfacegan_boundaries")
|
112 |
-
|
113 |
-
boundaries_and_distances = []
|
114 |
-
for direction_type in edit_directions:
|
115 |
-
distances = SUGGESTED_DISTANCES[direction_type]
|
116 |
-
boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt'), map_location="cpu").numpy()
|
117 |
-
|
118 |
-
for distance in distances:
|
119 |
-
if distance:
|
120 |
-
boundaries_and_distances.append((boundary, distance))
|
121 |
-
|
122 |
-
latents = []
|
123 |
-
for boundary, distance in boundaries_and_distances:
|
124 |
-
|
125 |
-
target_latent = project_code(source_latent, boundary, distance)
|
126 |
-
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
127 |
-
|
128 |
-
return latents
|
129 |
-
|
130 |
-
def interpolate_with_target_latents(args, source_latent, alphas):
|
131 |
# interpolate latent codes with all targets
|
132 |
|
133 |
print("Interpolating latent codes...")
|
134 |
|
135 |
latents = []
|
136 |
-
for
|
137 |
-
|
138 |
-
if target_latent_path == args.source_latent:
|
139 |
-
continue
|
140 |
-
|
141 |
-
target_latent = np.load(target_latent_path, allow_pickle=True)
|
142 |
-
|
143 |
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
144 |
|
145 |
return latents
|
@@ -157,105 +127,5 @@ def video_from_interpolations(fps, output_dir):
|
|
157 |
|
158 |
subprocess.call(command)
|
159 |
|
160 |
-
def merge_videos(output_dir, num_subdirs):
|
161 |
-
|
162 |
-
output_file = os.path.join(output_dir, "combined.mp4")
|
163 |
-
|
164 |
-
if num_subdirs == 1: # if we only have one video, just copy it over
|
165 |
-
shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file)
|
166 |
-
else: # otherwise merge using ffmpeg
|
167 |
-
command = ["ffmpeg"]
|
168 |
-
for dir in range(num_subdirs):
|
169 |
-
command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")])
|
170 |
-
|
171 |
-
sqrt_subdirs = int(num_subdirs ** .5)
|
172 |
-
|
173 |
-
if (sqrt_subdirs ** 2) != num_subdirs:
|
174 |
-
raise ValueError("Number of checkpoints cannot be arranged in a square grid")
|
175 |
-
|
176 |
-
command.append("-filter_complex")
|
177 |
-
|
178 |
-
filter_string = ""
|
179 |
-
vstack_string = ""
|
180 |
-
for row in range(sqrt_subdirs):
|
181 |
-
row_str = ""
|
182 |
-
for col in range(sqrt_subdirs):
|
183 |
-
row_str += f"[{row * sqrt_subdirs + col}:v]"
|
184 |
-
|
185 |
-
letter = chr(ord('A')+row)
|
186 |
-
row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];"
|
187 |
-
vstack_string += f"[{letter}]"
|
188 |
-
|
189 |
-
filter_string += row_str
|
190 |
-
|
191 |
-
vstack_string += f"vstack=inputs={sqrt_subdirs}[out]"
|
192 |
-
filter_string += vstack_string
|
193 |
-
|
194 |
-
command.extend([filter_string, "-map", "[out]", output_file])
|
195 |
-
|
196 |
-
subprocess.call(command)
|
197 |
-
|
198 |
-
def vid_to_gif(vid_path, output_dir, scale=256, fps=35):
|
199 |
-
|
200 |
-
command = ["ffmpeg",
|
201 |
-
"-i", f"{vid_path}",
|
202 |
-
"-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse",
|
203 |
-
"-loop", "0",
|
204 |
-
f"{output_dir}/out.gif"]
|
205 |
-
|
206 |
-
subprocess.call(command)
|
207 |
-
|
208 |
-
|
209 |
-
if __name__ == '__main__':
|
210 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
211 |
-
|
212 |
-
parser = argparse.ArgumentParser()
|
213 |
-
|
214 |
-
parser.add_argument('--size', type=int, default=1024)
|
215 |
-
parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.")
|
216 |
-
parser.add_argument('--channel_multiplier', type=int, default=2)
|
217 |
-
parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed")
|
218 |
-
parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code")
|
219 |
-
parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.")
|
220 |
-
parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video")
|
221 |
-
parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.')
|
222 |
-
parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}")
|
223 |
-
parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.")
|
224 |
-
|
225 |
-
args = parser.parse_args()
|
226 |
-
|
227 |
-
os.makedirs(args.out_dir, exist_ok=True)
|
228 |
-
|
229 |
-
if not args.force and os.listdir(args.out_dir):
|
230 |
-
print("Output directory is not empty. Either delete the directory content or re-run with -f.")
|
231 |
-
exit(0)
|
232 |
-
|
233 |
-
if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]):
|
234 |
-
args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")]
|
235 |
-
args.target_latents = sorted(args.target_latents)
|
236 |
-
|
237 |
-
args.latent = 512
|
238 |
-
args.n_mlp = 8
|
239 |
-
|
240 |
-
g_ema = Generator(
|
241 |
-
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
|
242 |
-
).to(device)
|
243 |
-
|
244 |
-
source_latent = np.load(args.source_latent, allow_pickle=True)
|
245 |
-
|
246 |
-
for idx, ckpt_path in enumerate(args.ckpt):
|
247 |
-
print(f"Generating video using checkpoint: {ckpt_path}")
|
248 |
-
checkpoint = torch.load(ckpt_path)
|
249 |
-
|
250 |
-
g_ema.load_state_dict(checkpoint['g_ema'])
|
251 |
-
|
252 |
-
output_dir = os.path.join(args.out_dir, str(idx))
|
253 |
-
os.makedirs(output_dir)
|
254 |
-
|
255 |
-
generate_frames(args, source_latent, [g_ema], output_dir)
|
256 |
-
video_from_interpolations(args.fps, output_dir)
|
257 |
-
|
258 |
-
merge_videos(args.out_dir, len(args.ckpt))
|
259 |
-
|
260 |
|
261 |
|
|
|
35 |
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
|
36 |
|
37 |
SUGGESTED_DISTANCES = {
|
38 |
+
"pose": 3.0,
|
39 |
+
"smile": 2.0,
|
40 |
+
"age": 4.0,
|
41 |
+
"gender": 3.0,
|
42 |
+
"hair_length": -4.0,
|
43 |
+
"beard": 2.0
|
44 |
}
|
45 |
|
46 |
def project_code(latent_code, boundary, distance=3.0):
|
|
|
50 |
|
51 |
return latent_code + distance * boundary
|
52 |
|
53 |
+
def project_code_by_edit_name(latent_code, name, strength):
|
54 |
+
boundary_dir = Path(os.path.abspath(__file__)).parents[0].joinpath("editing", "interfacegan_boundaries")
|
55 |
+
|
56 |
+
distance = SUGGESTED_DISTANCES[name] * strength
|
57 |
+
boundary = torch.load(os.path.join(boundary_dir, f'{name}.pt'), map_location="cpu").numpy()
|
58 |
+
|
59 |
+
return project_code(latent_code, boundary, distance)
|
60 |
+
|
61 |
+
def generate_frames(source_latent, target_latents, g_ema_list, output_dir):
|
62 |
|
63 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
64 |
|
65 |
+
num_alphas = min(20, 60 // len(target_latents))
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
alphas = np.linspace(0, 1, num=num_alphas)
|
68 |
+
|
69 |
+
latents = interpolate_with_target_latents(source_latent, target_latents, alphas)
|
70 |
|
71 |
segments = len(g_ema_list) - 1
|
72 |
+
|
73 |
if segments:
|
74 |
segment_length = len(latents) / segments
|
75 |
|
|
|
101 |
def interpolate_forward_backward(source_latent, target_latent, alphas):
|
102 |
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
|
103 |
latents_backward = latents_forward[::-1] # interpolate from target to source
|
104 |
+
return latents_forward + [target_latent] * len(alphas) + latents_backward # forward + short delay at target + return
|
105 |
|
106 |
+
def interpolate_with_target_latents(source_latent, target_latents, alphas):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# interpolate latent codes with all targets
|
108 |
|
109 |
print("Interpolating latent codes...")
|
110 |
|
111 |
latents = []
|
112 |
+
for target_latent in target_latents:
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
|
114 |
|
115 |
return latents
|
|
|
127 |
|
128 |
subprocess.call(command)
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
|