""" translation program for simple text 1. detect language from langdetect 2. translate to target language given by user Example from https://www.thepythoncode.com/article/machine-translation-using-huggingface-transformers-in-python user_input: string: string to be translated target_lang: language to be translated to Returns: string: translated string of text try this : https://pypi.org/project/EasyNMT/ and this : https://huggingface.co/IDEA-CCNL/Randeng-Deltalm-362M-En-Zh """ from __future__ import annotations from typing import Iterable import gradio as gr from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes import argparse import langid from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer class myTheme(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.red, secondary_hue: colors.Color | str = colors.blue, neutral_hue: colors.Color | str = colors.orange, spacing_size: sizes.Size | str = sizes.spacing_md, radius_size: sizes.Size | str = sizes.radius_md, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("handjet"), "cursive", # "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, spacing_size=spacing_size, radius_size=radius_size, text_size=text_size, font=font, font_mono=font_mono, ) super().set( body_background_fill="repeating-linear-gradient(135deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)", button_primary_background_fill="linear-gradient(90deg, *primary_600, *secondary_800)", button_primary_background_fill_hover="linear-gradient(45deg, *primary_200, *secondary_300)", button_primary_text_color="white", slider_color="*secondary_300", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_shadow="*shadow_drop_lg", button_large_padding="24px", ) def detect_lang(article): """ Language Detection using library langid Args: article (string): article that user wish to translate target_lang (string): language user want to translate article into Returns: string: detected language short form """ result_lang = langid.classify(article) return result_lang[0] def opus_trans(article, target_language): """ Translation by Helsinki-NLP model Args: article (string): article that user wishes to translate result_lang (string): detected language in short form target_language (string): language that user wishes to translate article into Returns: string: translated piece of article based off target_language """ result_lang = detect_lang(article) if target_language == "English": target_lang = "en" elif target_language == "Chinese": target_lang = "zh" if result_lang != target_lang: task_name = f"translation_{result_lang}_to_{target_lang}" model_name = f"Helsinki-NLP/opus-mt-{result_lang}-{target_lang}" try: translator = pipeline(task_name, model=model_name, tokenizer=model_name) translated = translator(article)[0]["translation_text"] except: translated = "Error: Model doesn't exist" else: translated = "Error: You chose the same language as the article detected language. Please reselect language and try again." return translated def nllb_trans(article, target_language): tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") inputs = tokenizer(article, return_tensors="pt") if target_language == "English": target_lang = "Eng_Latn" elif target_language == "Chinese": target_lang = "zho_Hans" translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[target_lang], max_length=30, ) return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] def translate(article, toolkit, target_language): if toolkit == "OPUS": translated = opus_trans(article, target_language) elif toolkit == "NLLB": translated = nllb_trans(article, target_language) return translated myTheme = myTheme() with gr.Blocks(theme=myTheme) as demo: article = gr.Textbox(label="Article") toolkit_select = gr.Radio(["OPUS", "NLLB"], label="Select Translation Model") lang_select = gr.Radio(["English", "Chinese"], label="Select Desired Language") result = gr.Textbox(label="Translated Result") trans_btn = gr.Button("Translate") trans_btn.click( fn=translate, inputs=[article, toolkit_select, lang_select], outputs=result ) demo.launch()