import base64
import datetime
import gradio as gr
import numpy as np
import os
import pytz
import psutil
import re
import random
import torch
import time
import shutil # Added for zip functionality
from PIL import Image
from io import BytesIO
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
try:
import intel_extension_for_pytorch as ipex
except:
pass
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
# add file save and download and clear:
# Function to create a zip file from a list of files
def create_zip(files):
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
zip_filename = f"images_{timestamp}.zip"
with zipfile.ZipFile(zip_filename, 'w') as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
return zip_filename
# Function to encode a file to base64
def encode_file_to_base64(file_path):
with open(file_path, "rb") as file:
encoded = base64.b64encode(file.read()).decode()
return encoded
# Function to save all images as a zip file and provide a base64 download link
def save_all_images(images):
if len(images) == 0:
return None, None
zip_filename = create_zip(images) # Create a zip file from the list of image files
zip_base64 = encode_file_to_base64(zip_filename) # Encode the zip file to base64
download_link = f'Download All'
return zip_filename, download_link
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'Download All'
return href
# Function to clear all image files
def clear_all_images():
base_dir = os.getcwd() # Get the current base directory
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
# Remove all image files
for file in img_files:
os.remove(file)
# Function to handle "Save All" button click
def save_all_button_click():
images = [file for file in os.listdir() if file.lower().endswith((".png", ".jpg", ".jpeg"))]
zip_filename, download_link = save_all_images(images)
if download_link:
gr.write(download_link)
zip_file = create_zip_of_files(all_files)
gr.HTML(get_zip_download_link(zip_file))
# Function to handle "Clear All" button click
def clear_all_button_click():
clear_all_images()
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7")
else:
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
# Load LCM LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
def safe_filename(text):
"""Generate a safe filename from a string."""
safe_text = re.sub(r'\W+', '_', text)
timestamp = datetime.datetime.now().strftime("%Y%m%d")
return f"{safe_text}_{timestamp}.png"
def encode_image(image):
"""Encode image to base64."""
buffered = BytesIO()
#image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def fake_gan():
base_dir = os.getcwd() # Get the current base directory
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files]
return images
def predict(prompt, guidance, steps, seed=1231231):
generator = torch.manual_seed(seed)
last_time = time.time()
results = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=steps,
guidance_scale=guidance,
width=512,
height=512,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
nsfw=gr.Button("🕹️NSFW🎨", scale=1)
try:
central = pytz.timezone('US/Central')
safe_date_time = datetime.datetime.now().strftime("%Y%m%d")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
filename = f"{safe_date_time}_{safe_prompt}.png"
# Save the image
if len(results.images) > 0:
image_path = os.path.join("", filename) # Specify your directory
results.images[0].save(image_path)
print(f"#Image saved as {image_path}")
encoded_image = encode_image(image)
html_link = f'Download Image'
gr.HTML(html_link)
except:
return results.images[0]
return results.images[0] if len(results.images) > 0 else None
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
# Add "Save All" button with emoji
save_all_button = gr.Button("💾 Save All", scale=1)
# Add "Clear All" button with emoji
clear_all_button = gr.Button("🗑️ Clear All", scale=1)
# Add buttons to the Streamlit app
gr.Button(save_all_button)
gr.Button(clear_all_button)
with gr.Column(elem_id="container"):
gr.Markdown(
"""##🕹️ Real Time 🎨 ImageGen Gallery 🌐""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
# Image Result from last prompt
image = gr.Image(type="filepath")
# Gallery of Generated Images with Image Names in Random Set to Download
with gr.Row(variant="compact"):
text = gr.Textbox(
label="Image Sets",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
)
btn = gr.Button("Generate Gallery of Saved Images")
gallery = gr.Gallery(
label="Generated Images", show_label=False, elem_id="gallery"
)
# Advanced Generate Options
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
# Diffusers
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running LCM-LoRAs it with `diffusers`
```bash
pip install diffusers==0.23.0
```
```py
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA
results = pipe(
prompt="ImageEditor",
num_inference_steps=4,
guidance_scale=0.0,
)
results.images[0]
```
"""
)
# Function IO Eventing and Controls
inputs = [prompt, guidance, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
btn.click(fake_gan, None, gallery)
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
# Attach click event handlers to the buttons
save_all_button.click(save_all_button_click)
clear_all_button.click(clear_all_button_click)
demo.queue()
demo.launch()