import base64 import datetime import gradio as gr import numpy as np import os import pytz import psutil import re import random import torch import time import time from PIL import Image from io import BytesIO from PIL import Image from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny try: import intel_extension_for_pytorch as ipex except: pass SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) HF_TOKEN = os.environ.get("HF_TOKEN", None) # check if MPS is available OSX only M1/M2/M3 chips mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() device = torch.device( "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" ) torch_device = device torch_dtype = torch.float16 print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") print(f"TORCH_COMPILE: {TORCH_COMPILE}") print(f"device: {device}") if mps_available: device = torch.device("mps") torch_device = "cpu" torch_dtype = torch.float32 if SAFETY_CHECKER == "True": pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7") else: pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.to(device=torch_device, dtype=torch_dtype).to(device) pipe.unet.to(memory_format=torch.channels_last) pipe.set_progress_bar_config(disable=True) # check if computer has less than 64GB of RAM using sys or os if psutil.virtual_memory().total < 64 * 1024**3: pipe.enable_attention_slicing() if TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) # Load LCM LoRA pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") pipe.fuse_lora() def safe_filename(text): """Generate a safe filename from a string.""" safe_text = re.sub(r'\W+', '_', text) timestamp = datetime.datetime.now().strftime("%Y%m%d") return f"{safe_text}_{timestamp}.png" def encode_image(image): """Encode image to base64.""" buffered = BytesIO() #image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() def fake_gan(): base_dir = os.getcwd() # Get the current base directory img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg" images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files] return images def predict(prompt, guidance, steps, seed=1231231): generator = torch.manual_seed(seed) last_time = time.time() results = pipe( prompt=prompt, generator=generator, num_inference_steps=steps, guidance_scale=guidance, width=512, height=512, # original_inference_steps=params.lcm_steps, output_type="pil", ) print(f"Pipe took {time.time() - last_time} seconds") nsfw_content_detected = ( results.nsfw_content_detected[0] if "nsfw_content_detected" in results else False ) if nsfw_content_detected: nsfw=gr.Button("🕹️NSFW🎨", scale=1) try: central = pytz.timezone('US/Central') safe_date_time = datetime.datetime.now().strftime("%Y%m%d") replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] filename = f"{safe_date_time}_{safe_prompt}.png" # Save the image if len(results.images) > 0: image_path = os.path.join("", filename) # Specify your directory results.images[0].save(image_path) print(f"#Image saved as {image_path}") encoded_image = encode_image(image) html_link = f'Download Image' #gr.Markdown(html_link) except: return results.images[0] return results.images[0] if len(results.images) > 0 else None css = """ #container{ margin: 0 auto; max-width: 40rem; } #intro{ max-width: 100%; text-align: center; margin: 0 auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="container"): gr.Markdown( """## 🕹️ Stable Diffusion 1.5 - Real Time 🎨 Image Generation Using 🌐 Latent Consistency LoRAs""", elem_id="intro", ) with gr.Row(): with gr.Row(): prompt = gr.Textbox( placeholder="Insert your prompt here:", scale=5, container=False ) generate_bt = gr.Button("Generate", scale=1) # Image Result from last prompt image = gr.Image(type="filepath") # Gallery of Generated Images with Image Names in Random Set to Download with gr.Row(variant="compact"): text = gr.Textbox( label="Image Sets", show_label=False, max_lines=1, placeholder="Enter your prompt", ) btn = gr.Button("Generate Gallery of Saved Images") gallery = gr.Gallery( label="Generated Images", show_label=False, elem_id="gallery" ) # Advanced Generate Options with gr.Accordion("Advanced options", open=False): guidance = gr.Slider( label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 ) steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) seed = gr.Slider( randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 ) # Diffusers with gr.Accordion("Run with diffusers"): gr.Markdown( """## Running LCM-LoRAs it with `diffusers` ```bash pip install diffusers==0.23.0 ``` ```py from diffusers import DiffusionPipeline, LCMScheduler pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA results = pipe( prompt="ImageEditor", num_inference_steps=4, guidance_scale=0.0, ) results.images[0] ``` """ ) # Function IO Eventing and Controls inputs = [prompt, guidance, steps, seed] generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) btn.click(fake_gan, None, gallery) prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) demo.queue() demo.launch()