Spaces:
Runtime error
Runtime error
File size: 10,639 Bytes
bb1b13b 8783961 bb1b13b de9d198 bb1b13b 02659a8 3d80262 25d3a18 e3d2786 bb1b13b de9d198 02659a8 6a7aae2 02659a8 6fb452a 3d80262 e67a76c 45337d4 e67a76c 6d1124c e67a76c fbab0f5 e67a76c 793ed3f fbab0f5 793ed3f 02659a8 fbab0f5 6d1124c dffd00a fbab0f5 de9b7a6 02659a8 de9d198 bd88c3e de9d198 bd88c3e de9d198 bd88c3e de9d198 bd88c3e de9d198 ed98223 ae4aefb ed98223 e6d5b6f ed98223 3043030 ed98223 bd88c3e de9d198 bd88c3e de9d198 bd88c3e de9d198 bd88c3e de9d198 bd88c3e de9d198 feb562f c89f94f 329ec73 5187dd9 329ec73 8678edc de9d198 5366491 de9d198 12fd800 de9d198 a8114ef de9d198 eb403fc de9d198 5366491 de9d198 bd88c3e 3043030 80e4491 3043030 ec71404 3043030 ec71404 3043030 ec71404 6242eec ec71404 fec2ec7 ec71404 de9d198 a1c7876 de9d198 ec71404 e9f4989 bd88c3e 8f40af2 80e4491 ba79244 bd88c3e 80e4491 bd88c3e 80e4491 cfdc849 80e4491 5e7f076 80e4491 bd88c3e ec71404 de9d198 bd88c3e 3043030 bd88c3e de9d198 d0b4c7a ef5e5f7 d0b4c7a de9d198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import base64
import datetime
import gradio as gr
import numpy as np
import os
import pytz
import psutil
import re
import random
import torch
import time
import shutil # Added for zip functionality
import zipfile
from PIL import Image
from io import BytesIO
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
try:
import intel_extension_for_pytorch as ipex
except:
pass
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
# Function to encode a file to base64
def encode_file_to_base64(file_path):
with open(file_path, "rb") as file:
encoded = base64.b64encode(file.read()).decode()
return encoded
def create_zip_of_files(files):
"""
Create a zip file from a list of files.
"""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
# Function to clear all image files
def clear_all_images():
base_dir = os.getcwd() # Get the current base directory
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
# Remove all image files
for file in img_files:
os.remove(file)
print('removed:' + file)
# add file save and download and clear:
# Function to create a zip file from a list of files
def create_zip(files):
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
zip_filename = f"images_{timestamp}.zip"
print('Creating file ' + zip_filename)
with zipfile.ZipFile(zip_filename, 'w') as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
print('added:' + file)
return zip_filename
def get_zip_download_link(zip_file):
"""
Generate a link to download the zip file.
"""
zip_base64 = encode_file_to_base64(zip_file) # Encode the zip file to base64
href = f'<a href="data:application/zip;base64,{zip_base64}" download="{zip_file}">Download All</a>'
return href
def save_all_images(images):
if len(images) == 0:
return None, None
zip_filename = create_zip_of_files(images) # Create a zip file from the list of image files
print(f"Zip file created: {zip_filename}")
download_link = get_zip_download_link(zip_filename)
return zip_filename, download_link
def save_all_button_click():
images = [file for file in os.listdir() if file.lower().endswith((".png", ".jpg", ".jpeg"))]
zip_filename, download_link = save_all_images(images)
if download_link:
gr.HTML(download_link)
# Function to handle "Clear All" button click
def clear_all_button_click():
clear_all_images()
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7")
else:
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
# Load LCM LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
def safe_filename(text):
"""Generate a safe filename from a string."""
safe_text = re.sub(r'\W+', '_', text)
timestamp = datetime.datetime.now().strftime("%Y%m%d")
return f"{safe_text}_{timestamp}.png"
def encode_image(image):
"""Encode image to base64."""
buffered = BytesIO()
#image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def fake_gan():
base_dir = os.getcwd() # Get the current base directory
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files]
return images
def predict(prompt, guidance, steps, seed=1231231):
generator = torch.manual_seed(seed)
last_time = time.time()
results = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=steps,
guidance_scale=guidance,
width=512,
height=512,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
nsfw=gr.Button("🕹️NSFW🎨", scale=1)
try:
central = pytz.timezone('US/Central')
safe_date_time = datetime.datetime.now().strftime("%Y%m%d")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
filename = f"{safe_date_time}_{safe_prompt}.png"
# Save the image
if len(results.images) > 0:
image_path = os.path.join("", filename) # Specify your directory
results.images[0].save(image_path)
print(f"#Image saved as {image_path}")
gr.File(image_path)
gr.Button(link=image_path)
# encoded_image = encode_image(image)
# html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>'
# gr.HTML(html_link)
except:
return results.images[0]
return results.images[0] if len(results.images) > 0 else None
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""4📝RT🖼️Images - 🕹️ Real Time 🎨 Image Generator Gallery 🌐""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
# Image Result from last prompt
image = gr.Image(type="filepath")
# Gallery of Generated Images with Image Names in Random Set to Download
with gr.Row(variant="compact"):
text = gr.Textbox(
label="Image Sets",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
)
btn = gr.Button("Generate Gallery of Saved Images")
gallery = gr.Gallery(
label="Generated Images", show_label=False, elem_id="gallery"
)
with gr.Row(variant="compact"):
# Add "Save All" button with emoji
save_all_button = gr.Button("💾 Save All", scale=1)
# Add "Clear All" button with emoji
clear_all_button = gr.Button("🗑️ Clear All", scale=1)
# Advanced Generate Options
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
# Diffusers
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running LCM-LoRAs it with `diffusers`
```bash
pip install diffusers==0.23.0
```
```py
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA
results = pipe(
prompt="ImageEditor",
num_inference_steps=4,
guidance_scale=0.0,
)
results.images[0]
```
"""
)
# Function IO Eventing and Controls
inputs = [prompt, guidance, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
btn.click(fake_gan, None, gallery)
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
# Attach click event handlers to the buttons
save_all_button.click(save_all_button_click)
with gr.Column():
file_obj = gr.File(label="Input File")
input= file_obj
clear_all_button.click(clear_all_button_click)
demo.queue()
demo.launch()
|