|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math
|
|
from typing import Any, Dict, Iterable, Optional, Sequence, Union
|
|
|
|
import numpy as np
|
|
import torch as th
|
|
|
|
|
|
def sigmoid_schedule(t, start=-3, end=3, tau=0.6, clip_min=1e-9):
|
|
def sigmoid(x):
|
|
return 1 / (1 + np.exp(-x))
|
|
|
|
v_start = sigmoid(start / tau)
|
|
v_end = sigmoid(end / tau)
|
|
output = sigmoid((t * (end - start) + start) / tau)
|
|
output = (v_end - output) / (v_end - v_start)
|
|
return np.clip(output, clip_min, 1.0)
|
|
|
|
|
|
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
|
|
"""
|
|
This is the deprecated API for creating beta schedules.
|
|
|
|
See get_named_beta_schedule() for the new library of schedules.
|
|
"""
|
|
if beta_schedule == "linear":
|
|
betas = np.linspace(
|
|
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
|
)
|
|
else:
|
|
raise NotImplementedError(beta_schedule)
|
|
assert betas.shape == (num_diffusion_timesteps,)
|
|
return betas
|
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, exp_p=12):
|
|
"""
|
|
Get a pre-defined beta schedule for the given name.
|
|
|
|
The beta schedule library consists of beta schedules which remain similar
|
|
in the limit of num_diffusion_timesteps.
|
|
Beta schedules may be added, but should not be removed or changed once
|
|
they are committed to maintain backwards compatibility.
|
|
"""
|
|
if schedule_name == "linear":
|
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps
|
|
return get_beta_schedule(
|
|
"linear",
|
|
beta_start=scale * 0.0001,
|
|
beta_end=scale * 0.02,
|
|
num_diffusion_timesteps=num_diffusion_timesteps,
|
|
)
|
|
elif schedule_name == "cosine":
|
|
return betas_for_alpha_bar(
|
|
num_diffusion_timesteps,
|
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
|
)
|
|
elif schedule_name == "sigmoid":
|
|
|
|
return betas_for_alpha_bar(
|
|
num_diffusion_timesteps, lambda t: sigmoid_schedule(t)
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
|
"""
|
|
Create a beta schedule that discretizes the given alpha_t_bar function,
|
|
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
|
|
|
:param num_diffusion_timesteps: the number of betas to produce.
|
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
|
produces the cumulative product of (1-beta) up to that
|
|
part of the diffusion process.
|
|
:param max_beta: the maximum beta to use; use values lower than 1 to
|
|
prevent singularities.
|
|
"""
|
|
betas = []
|
|
for i in range(num_diffusion_timesteps):
|
|
t1 = i / num_diffusion_timesteps
|
|
t2 = (i + 1) / num_diffusion_timesteps
|
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
|
return np.array(betas)
|
|
|
|
|
|
def space_timesteps(num_timesteps, section_counts):
|
|
"""
|
|
Create a list of timesteps to use from an original diffusion process,
|
|
given the number of timesteps we want to take from equally-sized portions
|
|
of the original process.
|
|
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
|
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
|
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
|
:param num_timesteps: the number of diffusion steps in the original
|
|
process to divide up.
|
|
:param section_counts: either a list of numbers, or a string containing
|
|
comma-separated numbers, indicating the step count
|
|
per section. As a special case, use "ddimN" where N
|
|
is a number of steps to use the striding from the
|
|
DDIM paper.
|
|
:return: a set of diffusion steps from the original process to use.
|
|
"""
|
|
if isinstance(section_counts, str):
|
|
if section_counts.startswith("ddim"):
|
|
desired_count = int(section_counts[len("ddim") :])
|
|
for i in range(1, num_timesteps):
|
|
if len(range(0, num_timesteps, i)) == desired_count:
|
|
return set(range(0, num_timesteps, i))
|
|
raise ValueError(
|
|
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
|
)
|
|
elif section_counts.startswith("exact"):
|
|
res = set(int(x) for x in section_counts[len("exact") :].split(","))
|
|
for x in res:
|
|
if x < 0 or x >= num_timesteps:
|
|
raise ValueError(f"timestep out of bounds: {x}")
|
|
return res
|
|
section_counts = [int(x) for x in section_counts.split(",")]
|
|
size_per = num_timesteps // len(section_counts)
|
|
extra = num_timesteps % len(section_counts)
|
|
start_idx = 0
|
|
all_steps = []
|
|
for i, section_count in enumerate(section_counts):
|
|
size = size_per + (1 if i < extra else 0)
|
|
if size < section_count:
|
|
raise ValueError(
|
|
f"cannot divide section of {size} steps into {section_count}"
|
|
)
|
|
if section_count <= 1:
|
|
frac_stride = 1
|
|
else:
|
|
frac_stride = (size - 1) / (section_count - 1)
|
|
cur_idx = 0.0
|
|
taken_steps = []
|
|
for _ in range(section_count):
|
|
taken_steps.append(start_idx + round(cur_idx))
|
|
cur_idx += frac_stride
|
|
all_steps += taken_steps
|
|
start_idx += size
|
|
return set(all_steps)
|
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
|
"""Extract values from a 1-D numpy array for a batch of indices."""
|
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
|
while len(res.shape) < len(broadcast_shape):
|
|
res = res[..., None]
|
|
return res + th.zeros(broadcast_shape, device=timesteps.device)
|
|
|
|
|
|
class GaussianDiffusion:
|
|
"""
|
|
Utilities for sampling from Gaussian diffusion models.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
betas: Sequence[float],
|
|
model_mean_type: str,
|
|
model_var_type: str,
|
|
channel_scales: Optional[np.ndarray] = None,
|
|
channel_biases: Optional[np.ndarray] = None,
|
|
):
|
|
self.model_mean_type = model_mean_type
|
|
self.model_var_type = model_var_type
|
|
self.channel_scales = channel_scales
|
|
self.channel_biases = channel_biases
|
|
|
|
|
|
betas = np.array(betas, dtype=np.float64)
|
|
self.betas = betas
|
|
assert len(betas.shape) == 1, "betas must be 1-D"
|
|
assert (betas > 0).all() and (betas <= 1).all()
|
|
|
|
self.num_timesteps = int(betas.shape[0])
|
|
|
|
alphas = 1.0 - betas
|
|
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
|
|
|
self.posterior_variance = (
|
|
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
|
)
|
|
|
|
self.posterior_log_variance_clipped = np.log(
|
|
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
|
)
|
|
|
|
self.posterior_mean_coef1 = (
|
|
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
|
)
|
|
self.posterior_mean_coef2 = (
|
|
(1.0 - self.alphas_cumprod_prev)
|
|
* np.sqrt(alphas)
|
|
/ (1.0 - self.alphas_cumprod)
|
|
)
|
|
|
|
def scale_channels(self, x: th.Tensor) -> th.Tensor:
|
|
"""Apply channel-wise scaling."""
|
|
if self.channel_scales is not None:
|
|
x = x * th.from_numpy(self.channel_scales).to(x).reshape(
|
|
[1, -1, *([1] * (len(x.shape) - 2))]
|
|
)
|
|
if self.channel_biases is not None:
|
|
x = x + th.from_numpy(self.channel_biases).to(x).reshape(
|
|
[1, -1, *([1] * (len(x.shape) - 2))]
|
|
)
|
|
return x
|
|
|
|
def unscale_channels(self, x: th.Tensor) -> th.Tensor:
|
|
"""Remove channel-wise scaling."""
|
|
if self.channel_biases is not None:
|
|
x = x - th.from_numpy(self.channel_biases).to(x).reshape(
|
|
[1, -1, *([1] * (len(x.shape) - 2))]
|
|
)
|
|
if self.channel_scales is not None:
|
|
x = x / th.from_numpy(self.channel_scales).to(x).reshape(
|
|
[1, -1, *([1] * (len(x.shape) - 2))]
|
|
)
|
|
return x
|
|
|
|
def unscale_out_dict(
|
|
self, out: Dict[str, Union[th.Tensor, Any]]
|
|
) -> Dict[str, Union[th.Tensor, Any]]:
|
|
return {
|
|
k: (self.unscale_channels(v) if isinstance(v, th.Tensor) else v)
|
|
for k, v in out.items()
|
|
}
|
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t):
|
|
"""
|
|
Compute the mean and variance of the diffusion posterior:
|
|
|
|
q(x_{t-1} | x_t, x_0)
|
|
|
|
"""
|
|
assert x_start.shape == x_t.shape
|
|
posterior_mean = (
|
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
|
)
|
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
|
posterior_log_variance_clipped = _extract_into_tensor(
|
|
self.posterior_log_variance_clipped, t, x_t.shape
|
|
)
|
|
assert (
|
|
posterior_mean.shape[0]
|
|
== posterior_variance.shape[0]
|
|
== posterior_log_variance_clipped.shape[0]
|
|
== x_start.shape[0]
|
|
)
|
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
|
|
|
def p_mean_variance(
|
|
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
|
|
):
|
|
"""
|
|
Apply the model to get p(x_{t-1} | x_t).
|
|
"""
|
|
if model_kwargs is None:
|
|
model_kwargs = {}
|
|
|
|
B, C = x.shape[:2]
|
|
assert t.shape == (B,)
|
|
|
|
|
|
model_output = model(x, t, **model_kwargs)
|
|
if isinstance(model_output, tuple):
|
|
model_output, prev_latent = model_output
|
|
model_kwargs["prev_latent"] = prev_latent
|
|
|
|
|
|
model_variance, model_log_variance = {
|
|
|
|
|
|
"fixed_large": (
|
|
np.append(self.posterior_variance[1], self.betas[1:]),
|
|
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
|
),
|
|
"fixed_small": (
|
|
self.posterior_variance,
|
|
self.posterior_log_variance_clipped,
|
|
),
|
|
}[self.model_var_type]
|
|
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
|
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
|
|
|
def process_xstart(x):
|
|
if denoised_fn is not None:
|
|
x = denoised_fn(x)
|
|
if clip_denoised:
|
|
x = x.clamp(
|
|
-self.channel_scales[0] * 0.67, self.channel_scales[0] * 0.67
|
|
)
|
|
x[:, 3:] = x[:, 3:].clamp(
|
|
-self.channel_scales[3] * 0.5, self.channel_scales[3] * 0.5
|
|
)
|
|
return x
|
|
return x
|
|
|
|
if self.model_mean_type == "x_prev":
|
|
pred_xstart = process_xstart(
|
|
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
|
|
)
|
|
model_mean = model_output
|
|
elif self.model_mean_type in ["x_start", "epsilon"]:
|
|
if self.model_mean_type == "x_start":
|
|
pred_xstart = process_xstart(model_output)
|
|
else:
|
|
pred_xstart = process_xstart(
|
|
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
|
)
|
|
model_mean, _, _ = self.q_posterior_mean_variance(
|
|
x_start=pred_xstart, x_t=x, t=t
|
|
)
|
|
|
|
else:
|
|
raise NotImplementedError(self.model_mean_type)
|
|
|
|
assert (
|
|
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
|
)
|
|
return {
|
|
"mean": model_mean,
|
|
"variance": model_variance,
|
|
"log_variance": model_log_variance,
|
|
"pred_xstart": pred_xstart,
|
|
}
|
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps):
|
|
assert x_t.shape == eps.shape
|
|
return (
|
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
|
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
|
)
|
|
|
|
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
|
assert x_t.shape == xprev.shape
|
|
return (
|
|
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
|
|
- _extract_into_tensor(
|
|
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
|
|
)
|
|
* x_t
|
|
)
|
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
|
return (
|
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
|
- pred_xstart
|
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
|
|
|
def ddim_sample_loop_progressive(
|
|
self,
|
|
model,
|
|
shape,
|
|
noise=None,
|
|
clip_denoised=True,
|
|
denoised_fn=None,
|
|
model_kwargs=None,
|
|
device=None,
|
|
progress=False,
|
|
eta=0.0,
|
|
):
|
|
"""
|
|
Use DDIM to sample from the model and yield intermediate samples.
|
|
"""
|
|
if device is None:
|
|
device = next(model.parameters()).device
|
|
assert isinstance(shape, (tuple, list))
|
|
if noise is not None:
|
|
img = noise
|
|
else:
|
|
img = th.randn(*shape, device=device)
|
|
|
|
indices = list(range(self.num_timesteps))[::-1]
|
|
|
|
if progress:
|
|
from tqdm.auto import tqdm
|
|
|
|
indices = tqdm(indices)
|
|
|
|
for i in indices:
|
|
t = th.tensor([i] * shape[0], device=device)
|
|
with th.no_grad():
|
|
out = self.ddim_sample(
|
|
model,
|
|
img,
|
|
t,
|
|
clip_denoised=clip_denoised,
|
|
denoised_fn=denoised_fn,
|
|
model_kwargs=model_kwargs,
|
|
eta=eta,
|
|
)
|
|
yield self.unscale_out_dict(out)
|
|
img = out["sample"]
|
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
|
return (
|
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
|
- pred_xstart
|
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
|
|
|
def ddim_sample(
|
|
self,
|
|
model,
|
|
x,
|
|
t,
|
|
clip_denoised=True,
|
|
denoised_fn=None,
|
|
model_kwargs=None,
|
|
eta=0.0,
|
|
):
|
|
"""
|
|
Sample x_{t-1} from the model using DDIM.
|
|
"""
|
|
out = self.p_mean_variance(
|
|
model,
|
|
x,
|
|
t,
|
|
clip_denoised=clip_denoised,
|
|
denoised_fn=denoised_fn,
|
|
model_kwargs=model_kwargs,
|
|
)
|
|
|
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
|
|
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
|
sigma = (
|
|
eta
|
|
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
|
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
|
)
|
|
|
|
|
|
noise = th.randn_like(x)
|
|
mean_pred = (
|
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
|
+ th.sqrt(1 - alpha_bar_prev - sigma**2) * eps
|
|
)
|
|
nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
|
sample = mean_pred + nonzero_mask * sigma * noise
|
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
|
|
|
|
|
class SpacedDiffusion(GaussianDiffusion):
|
|
"""
|
|
A diffusion process which can skip steps in a base diffusion process.
|
|
"""
|
|
|
|
def __init__(self, use_timesteps: Iterable[int], **kwargs):
|
|
self.use_timesteps = set(use_timesteps)
|
|
self.timestep_map = []
|
|
self.original_num_steps = len(kwargs["betas"])
|
|
|
|
base_diffusion = GaussianDiffusion(**kwargs)
|
|
last_alpha_cumprod = 1.0
|
|
new_betas = []
|
|
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
|
if i in self.use_timesteps:
|
|
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
|
last_alpha_cumprod = alpha_cumprod
|
|
self.timestep_map.append(i)
|
|
kwargs["betas"] = np.array(new_betas)
|
|
super().__init__(**kwargs)
|
|
|
|
def p_mean_variance(self, model, *args, **kwargs):
|
|
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
|
|
|
def _wrap_model(self, model):
|
|
if isinstance(model, _WrappedModel):
|
|
return model
|
|
return _WrappedModel(model, self.timestep_map, self.original_num_steps)
|
|
|
|
|
|
class _WrappedModel:
|
|
"""Helper class to wrap models for SpacedDiffusion."""
|
|
|
|
def __init__(self, model, timestep_map, original_num_steps):
|
|
self.model = model
|
|
self.timestep_map = timestep_map
|
|
self.original_num_steps = original_num_steps
|
|
|
|
def __call__(self, x, ts, **kwargs):
|
|
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
|
new_ts = map_tensor[ts]
|
|
return self.model(x, new_ts, **kwargs)
|
|
|