LingEval / app.py
jialicheng's picture
Update app.py
97f85a3 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai
import json
# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", load_in_4bit=True)
# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf", load_in_4bit=True)
os.environ['OPENAI_API_KEY']
openai.api_key = os.environ['OPENAI_API_KEY']
def linguistic_features_fn(message):
# Load a trained spaCy pipeline
nlp = spacy.load("en_core_web_sm")
# Create a spaCy doc object
doc = nlp(message)
# Initiate LFTK extractor by passing in the doc
LFTK = lftk.Extractor(docs=doc)
# Customize LFTK extractor (optional)
LFTK.customize(stop_words=True, punctuations=False, round_decimal=3)
# Use LFTK to dynamically extract handcrafted linguistic features
extracted_features = LFTK.extract(features = ["a_word_ps", "a_kup_pw", "n_noun"])
formatted_output = json.dumps(extracted_features, indent=2)
print(formatted_output)
return formatted_output
def chat(user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model = model,
messages=[
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
# if (have_key == "No"):
# return "", chat_history
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('GPT ling ents Prompt + Context:')
print(formatted_prompt)
bot_message = chat(user_prompt = f'''Output any <{tab_name}> in the following sentence one per line: "{formatted_prompt}"''')
chat_history.insert(0, (message, bot_message))
return "", chat_history
def vicuna_respond(tab_name, message, chat_history):
formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
print('Vicuna Ling Ents Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def llama_respond(tab_name, message, chat_history):
formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
# print('Llama - Prompt + Context:')
# print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
# print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def gpt_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
# if (have_key == "No"):
# return "", chat_history
formatted_system_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
formatted_system_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
formatted_system_prompt = f'''"{demon_chunk}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('GPT coreNLP Prompt + Context:')
print(formatted_prompt)
bot_message = chat(user_prompt = formatted_system_prompt)
chat_history.insert(0, (message, bot_message))
return "", chat_history
def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"'''
print('Vicuna Strategy Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
elif (strategy == "S2"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
elif (strategy == "S3"):
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"'''
print('Llama Strategies - Prompt + Context:')
print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.insert(0, (formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def interface():
with gr.Tab("Linguistic Entities"):
with gr.Row():
gr.Markdown("""
## πŸ“œ Step-By-Step Instructions
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
- Select a Linguistic Entity from the Dropdown or enter a custom one.
- Click 'Submit' to send your inputs to the models.
- To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones.
### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs.
### πŸ€– Then, the models will output the linguistic entity found in your prompt based on your selection!
""")
gr.Markdown("""
### πŸ“Š Linguistic Complexity
- We use existing tool, [LFTK](https://github.com/brucewlee/lftk?tab=readme-ov-file), to estimate the liguistic complexity of input sentences.
- For more information regarding the meanings of each feature keyword, please reference their documentation [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).
""")
# Inputs
ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt here")
# with gr.Row():
# # Will activate after getting API key
# have_key2 = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
# ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password")
linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity", allow_custom_value=True, info="If your choice is not included in the options, please type your own.")
ling_ents_btn = gr.Button(value="Submit")
# Outputs
user_prompt_1 = gr.Textbox(label="Original prompt")
# Linguistic Complexities
linguistic_features_textbox = gr.Textbox(label="Linguistic Complexity")
gr.Markdown(" Definitions for the complexity indices can be found [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).")
with gr.Row():
gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
# clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, have_key2, linguistic_entities,
# vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot,])
# Event Handler for API Key
# ling_ents_btn.click(update_api_key, inputs=ling_ents_apikey_input)
def update_textbox(prompt):
return prompt
ling_ents_btn.click(fn=update_textbox, inputs=ling_ents_prompt, outputs=user_prompt_1, api_name="ling_ents_btn")
# Show features from LFTK
ling_ents_btn.click(linguistic_features_fn, inputs=[ling_ents_prompt], outputs=[linguistic_features_textbox])
# Event Handler for GPT 3.5 Chatbot
ling_ents_btn.click(gpt_respond, inputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot],
outputs=[ling_ents_prompt, gpt_ling_ents_chatbot])
# Event Handler for LLaMA Chatbot
ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
# Event Handler for Vicuna Chatbot
ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])
with gr.Tab("CoreNLP"):
with gr.Row():
gr.Markdown("""
## πŸ“œ Step-By-Step Instructions
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
- Select a Task from the Dropdown.
- Select a Linguistic Entity from the Dropdown or enter a custom one.
- Click 'Submit' to send your inputs to the models.
- To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones.
### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs.
### πŸ€– Then, the models will output the POS Tagging or Chunking in your prompt with three different strategies based on your selections!
""")
with gr.Column():
gr.Markdown("""
### πŸ“Š Linguistic Complexity
- We use existing tool, [LFTK](https://github.com/brucewlee/lftk?tab=readme-ov-file), to estimate the liguistic complexity of input sentences.
- For more information regarding the meanings of each feature keyword, please reference their documentation [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).
""")
gr.Markdown("""
### πŸ› οΈ How each Strategy works
- Strategy 1 - QA-Based Prompting
- The model is prompted with a question-answer format. The input consists of a question, and the model generates a response based on the understanding of the question and its knowledge.
- Strategy 2 - Instruction-Based Prompting
- Involves providing the model with explicit instructions on how to generate a response. Instead of relying solely on context or previous knowledge, the instructions guide the model in generating content that aligns with specific criteria.
- Strategy 3 - Structured Prompting
- Involves presenting information to the model in a structured format, often with defined sections or categories. The model then generates responses following the given structure.
""")
# Inputs
task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt here")
# with gr.Row():
# have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
# task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=True)
task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1", allow_custom_value=True, info="If your choice is not included in the options, please type your own.")
task_btn = gr.Button(value="Submit")
# Outputs
user_prompt_2 = gr.Textbox(label="Original prompt", )
# Linguistic Complexity
linguistic_features_textbox_2 = gr.Textbox(label="Linguistic Complexity")
gr.Markdown(" Definitions for the complexity indices can be found [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).")
gr.Markdown("### Strategy 1 - QA-Based Prompting")
strategy1 = gr.Markdown("S1", visible=False)
with gr.Row():
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
gr.Markdown("### Strategy 2 - Instruction-Based Prompting")
strategy2 = gr.Markdown("S2", visible=False)
with gr.Row():
gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
llama_S2_chatbot = gr.Chatbot(label="llama-7b")
vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
gr.Markdown("### Strategy 3 - Structured Prompting")
strategy3 = gr.Markdown("S3", visible=False)
with gr.Row():
gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
llama_S3_chatbot = gr.Chatbot(label="llama-7b")
vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
# clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input, have_key, task, task_linguistic_entities,
# vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot,
# vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
# vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
# Event Handler for API Key
# task_btn.click(update_api_key, inputs=task_apikey_input)
# Show user's original prompt
def update_textbox(prompt):
return prompt
task_btn.click(fn=update_textbox, inputs=task_prompt, outputs=user_prompt_2, api_name="task_btn")
# Show features from LFTK
task_btn.click(linguistic_features_fn, inputs=[task_prompt], outputs=[linguistic_features_textbox_2])
# Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
# Will activate after getting API key
# task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, gpt_S1_chatbot],
outputs=[task_prompt, gpt_S1_chatbot])
task_btn.click(gpt_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, gpt_S2_chatbot],
outputs=[task_prompt, gpt_S2_chatbot])
task_btn.click(gpt_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, gpt_S3_chatbot],
outputs=[task_prompt, gpt_S3_chatbot])
# Event Handler for LLaMA Chatbot POS/Chunk
task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot],
outputs=[task, task_prompt, llama_S1_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot],
outputs=[task, task_prompt, llama_S2_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot],
outputs=[task, task_prompt, llama_S3_chatbot])
# Event Handlers for Vicuna Chatbot POS/Chunk
task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot],
outputs=[task, task_prompt, vicuna_S1_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot],
outputs=[task, task_prompt, vicuna_S2_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot],
outputs=[task, task_prompt, vicuna_S3_chatbot])
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# LingEval
## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models
""")
# load interface
interface()
demo.launch()