Spaces:
Sleeping
Sleeping
File size: 31,172 Bytes
7945c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from datetime import datetime
# Page configuration
st.set_page_config(
page_title="GPT-4o mini Pricing Calculator",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom styling
st.markdown("""
<style>
.main {
background-color: #f9f9f9;
padding: 1rem;
}
.title-container {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 10px;
margin-bottom: 1rem;
}
.metric-container {
background-color: white;
padding: 1rem;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
margin-bottom: 1rem;
}
.sub-header {
font-weight: bold;
color: #3366CC;
margin-bottom: 0.5rem;
}
.footer {
text-align: center;
margin-top: 2rem;
font-size: 0.8rem;
color: #666;
}
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #f9f9f9;
border-radius: 4px 4px 0px 0px;
padding: 10px;
}
.stTabs [aria-selected="true"] {
background-color: #3366CC;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Title section
st.markdown('<div class="title-container">', unsafe_allow_html=True)
st.title("GPT-4o mini Pricing Calculator")
st.markdown("Interactive cost analysis for text and audio processing using GPT-4o mini")
st.markdown('</div>', unsafe_allow_html=True)
# Sidebar navigation
st.sidebar.title("Navigation")
page = st.sidebar.radio("Select Page", ["Dashboard", "Text Analysis", "Audio Analysis", "Comparative Analysis", "Cost Calculator", "Documentation"])
# GPT-4o mini pricing constants
TEXT_INPUT_PRICE = 0.60 # $ per 1M tokens
TEXT_OUTPUT_PRICE = 2.40 # $ per 1M tokens
TEXT_CACHED_PRICE = 0.30 # $ per 1M tokens
AUDIO_INPUT_PRICE = 10.00 # $ per 1M tokens
AUDIO_OUTPUT_PRICE = 20.00 # $ per 1M tokens
AUDIO_CACHED_PRICE = 0.30 # $ per 1M tokens
# Helper functions for calculations
def calculate_text_costs(users, msgs_per_user, input_tokens, output_tokens, cached_pct=0):
# Calculate total token counts
total_input_tokens = users * msgs_per_user * input_tokens
total_output_tokens = users * msgs_per_user * output_tokens
# Apply caching
cached_input_tokens = total_input_tokens * (cached_pct / 100)
standard_input_tokens = total_input_tokens - cached_input_tokens
# Calculate costs
input_cost = (standard_input_tokens * TEXT_INPUT_PRICE / 1000000) + (cached_input_tokens * TEXT_CACHED_PRICE / 1000000)
output_cost = total_output_tokens * TEXT_OUTPUT_PRICE / 1000000
total_cost = input_cost + output_cost
return {
'input_tokens': total_input_tokens,
'output_tokens': total_output_tokens,
'input_cost': input_cost,
'output_cost': output_cost,
'total_cost': total_cost,
'cost_per_message': total_cost / (users * msgs_per_user) if users * msgs_per_user > 0 else 0
}
def calculate_audio_costs(users, audio_minutes, tokens_per_sec=600, output_ratio=0.05, cached_pct=0):
# Calculate token counts
seconds = audio_minutes * 60
total_input_tokens = users * seconds * tokens_per_sec
total_output_tokens = total_input_tokens * output_ratio
# Apply caching
cached_input_tokens = total_input_tokens * (cached_pct / 100)
standard_input_tokens = total_input_tokens - cached_input_tokens
# Calculate costs
input_cost = (standard_input_tokens * AUDIO_INPUT_PRICE / 1000000) + (cached_input_tokens * AUDIO_CACHED_PRICE / 1000000)
output_cost = total_output_tokens * AUDIO_OUTPUT_PRICE / 1000000
total_cost = input_cost + output_cost
return {
'input_tokens': total_input_tokens,
'output_tokens': total_output_tokens,
'input_cost': input_cost,
'output_cost': output_cost,
'total_cost': total_cost,
'cost_per_minute': total_cost / audio_minutes if audio_minutes > 0 else 0
}
# Dashboard page
if page == "Dashboard":
# Key metrics overview
st.header("GPT-4o mini Pricing Overview")
col1, col2, col3 = st.columns(3)
with col1:
st.markdown('<div class="metric-container">', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Text Processing</p>', unsafe_allow_html=True)
st.metric("Input Cost", f"${TEXT_INPUT_PRICE:.2f}/1M tokens")
st.metric("Output Cost", f"${TEXT_OUTPUT_PRICE:.2f}/1M tokens")
st.metric("Cached Input", f"${TEXT_CACHED_PRICE:.2f}/1M tokens")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="metric-container">', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Audio Processing</p>', unsafe_allow_html=True)
st.metric("Input Cost", f"${AUDIO_INPUT_PRICE:.2f}/1M tokens")
st.metric("Output Cost", f"${AUDIO_OUTPUT_PRICE:.2f}/1M tokens")
st.metric("Cached Input", f"${AUDIO_CACHED_PRICE:.2f}/1M tokens")
st.markdown('</div>', unsafe_allow_html=True)
with col3:
st.markdown('<div class="metric-container">', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Average Costs</p>', unsafe_allow_html=True)
# Calculate example costs
text_example = calculate_text_costs(1, 100, 15, 20)
audio_example = calculate_audio_costs(1, 10)
st.metric("Avg Text Cost/Message", f"${text_example['cost_per_message']:.6f}")
st.metric("Avg Audio Cost/Minute", f"${audio_example['cost_per_minute']:.4f}")
st.metric("Audio/Text Cost Ratio", f"{audio_example['cost_per_minute'] / (text_example['cost_per_message'] * 60):.1f}x")
st.markdown('</div>', unsafe_allow_html=True)
# Quick comparison chart
st.subheader("Cost Comparison: Text vs. Audio")
comparison_data = pd.DataFrame({
'Model Type': ['Text', 'Text', 'Audio', 'Audio'],
'Cost Component': ['Input', 'Output', 'Input', 'Output'],
'Cost per 1M Tokens': [TEXT_INPUT_PRICE, TEXT_OUTPUT_PRICE, AUDIO_INPUT_PRICE, AUDIO_OUTPUT_PRICE]
})
fig = px.bar(comparison_data, x='Model Type', y='Cost per 1M Tokens', color='Cost Component',
barmode='group', title="Cost Comparison per 1M Tokens",
color_discrete_sequence=["#3366CC", "#FF9900"])
fig.update_layout(yaxis_title="Cost ($)")
st.plotly_chart(fig, use_container_width=True)
# Usage scenarios
st.subheader("Common Usage Scenarios")
scenarios = pd.DataFrame({
'Scenario': ['Customer Support Chat', 'Document Analysis', 'Meeting Transcription', 'Podcast Analysis', 'Phone Call Analysis'],
'Type': ['Text', 'Text', 'Audio', 'Audio', 'Audio'],
'Avg Monthly Cost': [10.50, 25.75, 185.00, 740.00, 370.00],
'Suitable Plan': ['Basic', 'Basic', 'Premium', 'Enterprise', 'Premium']
})
st.dataframe(scenarios, use_container_width=True)
# Text Model Analysis
elif page == "Text Analysis":
st.header("GPT-4o mini Text Model Analysis")
st.info(f"""
**Text Model Pricing**:
- Input: ${TEXT_INPUT_PRICE:.2f} per 1M tokens
- Output: ${TEXT_OUTPUT_PRICE:.2f} per 1M tokens
- Cached Input: ${TEXT_CACHED_PRICE:.2f} per 1M tokens
""")
# Parameters section with input widgets
st.subheader("Usage Parameters")
col1, col2 = st.columns(2)
with col1:
users = st.number_input("Number of Users", min_value=100, value=5000, step=100)
free_pct = st.slider("% Free Tier Users", min_value=0, max_value=100, value=80)
basic_pct = st.slider("% Basic Tier Users (\$12.99)", min_value=0, max_value=100, value=15)
pro_pct = st.slider("% Pro Tier Users (\$24.99)", min_value=0, max_value=100, value=5)
with col2:
msgs_per_user_free = st.number_input("Free Tier Messages/Month", min_value=10, value=100, step=10)
msgs_per_user_basic = st.number_input("Basic Tier Messages/Month", min_value=10, value=300, step=10)
msgs_per_user_pro = st.number_input("Pro Tier Messages/Month", min_value=10, value=500, step=10)
input_tokens = st.slider("Input Tokens per Message", min_value=5, max_value=100, value=15)
output_tokens = st.slider("Output Tokens per Message", min_value=5, max_value=100, value=20)
cached_pct = st.slider("% Cached Input Tokens", min_value=0, max_value=100, value=0)
# Calculate user distribution
total_pct = free_pct + basic_pct + pro_pct
if total_pct != 100:
st.warning(f"Tier percentages sum to {total_pct}%. Please adjust to equal 100%.")
free_users = int(users * free_pct / 100)
basic_users = int(users * basic_pct / 100)
pro_users = int(users * pro_pct / 100)
# Token cost calculations
free_costs = calculate_text_costs(free_users, msgs_per_user_free, input_tokens, output_tokens, cached_pct)
basic_costs = calculate_text_costs(basic_users, msgs_per_user_basic, input_tokens, output_tokens, cached_pct)
pro_costs = calculate_text_costs(pro_users, msgs_per_user_pro, input_tokens, output_tokens, cached_pct)
# Calculate revenue
free_revenue = 0
basic_revenue = basic_users * 12.99
pro_revenue = pro_users * 24.99
total_revenue = free_revenue + basic_revenue + pro_revenue
total_cost = free_costs['total_cost'] + basic_costs['total_cost'] + pro_costs['total_cost']
# Display metrics
st.subheader("Cost Analysis")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Monthly Cost", f"${total_cost:.2f}")
st.metric("Total Monthly Revenue", f"${total_revenue:.2f}")
with col2:
profit = total_revenue - total_cost
margin = (profit / total_revenue * 100) if total_revenue > 0 else 0
st.metric("Monthly Profit", f"${profit:.2f}")
st.metric("Profit Margin", f"{margin:.1f}%")
with col3:
avg_cost_per_user = total_cost / users if users > 0 else 0
st.metric("Avg. Cost per User", f"${avg_cost_per_user:.4f}")
st.metric("Total Messages/Month", f"{free_users * msgs_per_user_free + basic_users * msgs_per_user_basic + pro_users * msgs_per_user_pro:,}")
# Create visualizations
st.subheader("Cost Distribution")
# Cost breakdown by tier
tier_costs = pd.DataFrame({
'Tier': ['Free', 'Basic', 'Pro'],
'Cost': [free_costs['total_cost'], basic_costs['total_cost'], pro_costs['total_cost']],
'Users': [free_users, basic_users, pro_users]
})
col1, col2 = st.columns(2)
with col1:
fig = px.pie(tier_costs, values='Cost', names='Tier', title="Cost Distribution by Tier",
color_discrete_sequence=px.colors.qualitative.Plotly)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Create revenue vs cost comparison
comparison_data = pd.DataFrame({
'Tier': ['Free', 'Basic', 'Pro'],
'Revenue': [free_revenue, basic_revenue, pro_revenue],
'Cost': [free_costs['total_cost'], basic_costs['total_cost'], pro_costs['total_cost']]
})
fig = px.bar(comparison_data, x='Tier', y=['Revenue', 'Cost'], barmode='group',
title="Revenue vs Cost by Tier",
color_discrete_sequence=["#3366CC", "#FF9900"])
st.plotly_chart(fig, use_container_width=True)
# Token usage breakdown
st.subheader("Token Usage Analysis")
token_data = pd.DataFrame({
'Tier': ['Free', 'Basic', 'Pro'],
'Input Tokens (M)': [free_costs['input_tokens']/1000000, basic_costs['input_tokens']/1000000, pro_costs['input_tokens']/1000000],
'Output Tokens (M)': [free_costs['output_tokens']/1000000, basic_costs['output_tokens']/1000000, pro_costs['output_tokens']/1000000]
})
fig = px.bar(token_data, x='Tier', y=['Input Tokens (M)', 'Output Tokens (M)'], barmode='group',
title="Monthly Token Usage by Tier (Millions)",
color_discrete_sequence=["#4CAF50", "#2196F3"])
st.plotly_chart(fig, use_container_width=True)
# Break-even analysis
st.subheader("Break-even Analysis")
# Calculate fixed costs (assumed)
fixed_costs = 2000
# Calculate contribution margin per user type
cm_basic = 12.99 - (basic_costs['total_cost'] / basic_users if basic_users > 0 else 0)
cm_pro = 24.99 - (pro_costs['total_cost'] / pro_users if pro_users > 0 else 0)
# Calculate break-even point
total_cm = (cm_basic * basic_users) + (cm_pro * pro_users)
break_even_users = int(fixed_costs / (total_cm / (basic_users + pro_users))) if basic_users + pro_users > 0 else 0
col1, col2 = st.columns(2)
with col1:
st.metric("Fixed Monthly Costs", f"${fixed_costs:.2f}")
st.metric("Contribution Margin (Basic)", f"${cm_basic:.2f}/user")
st.metric("Contribution Margin (Pro)", f"${cm_pro:.2f}/user")
with col2:
st.metric("Break-even Point", f"{break_even_users:,} paid users")
be_conversion = break_even_users / (users * (basic_pct + pro_pct) / 100) if users * (basic_pct + pro_pct) / 100 > 0 else 0
st.metric("Required Conversion Rate", f"{be_conversion:.1%}")
# Audio Model Analysis
elif page == "Audio Analysis":
st.header("GPT-4o mini Audio Model Analysis")
st.info(f"""
**Audio Model Pricing**:
- Input: ${AUDIO_INPUT_PRICE:.2f} per 1M tokens
- Output: ${AUDIO_OUTPUT_PRICE:.2f} per 1M tokens
- Cached Input: ${AUDIO_CACHED_PRICE:.2f} per 1M tokens
""")
# Audio model parameters
st.subheader("Audio Processing Parameters")
col1, col2 = st.columns(2)
with col1:
audio_minutes = st.number_input("Average Minutes of Audio/Month/User", min_value=1, value=10, step=1)
tokens_per_sec = st.number_input("Audio Tokens per Second", min_value=100, value=600, step=10)
users = st.number_input("Number of Users", min_value=10, value=1000, step=10)
with col2:
output_tokens_ratio = st.slider("Output:Input Token Ratio", min_value=0.01, max_value=0.20, value=0.05, step=0.01)
cached_ratio = st.slider("% Input Tokens Cached", min_value=0, max_value=100, value=20)
pricing_tier = st.selectbox("Pricing Model", ["B2C App (\$12.99/month)",
"B2B Service (\$299/month)",
"Enterprise (\$2500/month)"])
# Calculate costs
audio_costs = calculate_audio_costs(users, audio_minutes, tokens_per_sec, output_tokens_ratio, cached_ratio)
# Pricing model revenue
if pricing_tier == "B2C App (\$12.99/month)":
price_per_user = 12.99
elif pricing_tier == "B2B Service (\$299/month)":
price_per_user = 299
else: # Enterprise
price_per_user = 2500
revenue = users * price_per_user
cost_per_user = audio_costs['total_cost'] / users if users > 0 else 0
profit = revenue - audio_costs['total_cost']
margin = (profit / revenue) * 100 if revenue > 0 else 0
# Display metrics and charts
st.subheader("Cost Metrics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Cost per Minute", f"${(audio_costs['total_cost']/audio_minutes/users):.4f}")
st.metric("Total Monthly Cost", f"${audio_costs['total_cost']:.2f}")
with col2:
st.metric("Monthly Revenue", f"${revenue:.2f}")
st.metric("Monthly Profit", f"${profit:.2f}")
with col3:
st.metric("Profit Margin", f"{margin:.1f}%")
st.metric("Cost per User", f"${cost_per_user:.2f}")
# Visualization - Cost breakdown
st.subheader("Cost Breakdown")
# Calculate components
standard_input_cost = audio_costs['input_tokens'] * (1 - cached_ratio/100) * AUDIO_INPUT_PRICE / 1000000
cached_input_cost = audio_costs['input_tokens'] * (cached_ratio/100) * AUDIO_CACHED_PRICE / 1000000
output_cost = audio_costs['output_cost']
cost_components = pd.DataFrame({
'Component': ['Standard Input Cost', 'Cached Input Cost', 'Output Cost'],
'Cost': [standard_input_cost, cached_input_cost, output_cost]
})
col1, col2 = st.columns(2)
with col1:
fig = px.pie(cost_components, values='Cost', names='Component', title="Audio Processing Cost Distribution",
color_discrete_sequence=px.colors.qualitative.Pastel)
st.plotly_chart(fig, use_container_width=True)
with col2:
fig = px.bar(cost_components, x='Component', y='Cost', title="Cost Component Comparison",
color_discrete_sequence=["#4CAF50", "#2196F3", "#FF9800"])
st.plotly_chart(fig, use_container_width=True)
# Caching impact analysis
st.subheader("Impact of Caching on Costs")
cache_options = [0, 20, 40, 60, 80, 100]
cache_costs = []
for cache_pct in cache_options:
cache_result = calculate_audio_costs(users, audio_minutes, tokens_per_sec, output_tokens_ratio, cache_pct)
cache_costs.append(cache_result['total_cost'])
cache_data = pd.DataFrame({
'Cache Percentage': cache_options,
'Total Cost': cache_costs,
'Savings': [audio_costs['total_cost'] - cost for cost in cache_costs],
'Savings Percentage': [(audio_costs['total_cost'] - cost) / audio_costs['total_cost'] * 100 if audio_costs['total_cost'] > 0 else 0 for cost in cache_costs]
})
fig = px.line(cache_data, x='Cache Percentage', y='Total Cost', markers=True,
title="Effect of Caching on Total Cost",
labels={'Cache Percentage': 'Cached Input Tokens (%)', 'Total Cost': 'Total Cost ($)'},
color_discrete_sequence=["#FF5722"])
st.plotly_chart(fig, use_container_width=True)
# Optimization recommendations
if margin < 50:
st.warning("Warning: Low profit margin detected. Consider optimization strategies below.")
with st.expander("π Cost Optimization Strategies"):
st.markdown("""
1. **Increase Caching**: Boost cached input ratio to reduce costs by up to 97%
2. **Hybrid Processing**: Use specialized audio services for initial transcription
3. **Input Token Optimization**: Filter silence and implement smart chunking
4. **Tiered Processing**: Apply different processing depths based on user needs
""")
# Calculate hybrid model savings
hybrid_cost = (audio_costs['input_tokens'] * 0.006 / 1000000) + (audio_costs['output_tokens'] * TEXT_OUTPUT_PRICE / 1000000)
hybrid_savings = audio_costs['total_cost'] - hybrid_cost
hybrid_savings_pct = (hybrid_savings / audio_costs['total_cost']) * 100 if audio_costs['total_cost'] > 0 else 0
st.info(f"""
**Hybrid Model Potential Savings**: ${hybrid_savings:.2f} ({hybrid_savings_pct:.1f}%)
By using specialized transcription services (like Whisper) at \$0.006/min and processing the resulting text with GPT-4o mini text pricing.
""")
# Comparative Analysis
elif page == "Comparative Analysis":
st.header("Text vs. Audio Comparative Analysis")
# Cost comparison by use case
st.subheader("Cost Analysis by Use Case")
use_cases = pd.DataFrame({
'Use Case': ['Customer Service', 'Content Creation', 'Data Analysis', 'Meeting Transcription'],
'Text Cost ($)': [0.05, 0.12, 0.08, 0.15],
'Audio Cost ($)': [1.85, 4.20, 2.10, 11.10],
'Cost Ratio': [37, 35, 26, 74],
'Recommended Model': ['Text', 'Text', 'Text', 'Hybrid']
})
st.dataframe(use_cases, use_container_width=True)
# Cost scaling visualization
st.subheader("Cost Scaling with User Count")
# Toggle for linear/log scale
scale_type = st.radio("Scale Type", ["Linear", "Logarithmic"], horizontal=True)
# Generate data for comparison
users_range = [100, 500, 1000, 5000, 10000, 50000, 100000]
text_costs = [users * 0.0001 * 300 for users in users_range] # 300 msgs avg
audio_costs = [users * 0.37 * 10 for users in users_range] # 10 minutes avg
scaling_data = pd.DataFrame({
'Users': users_range,
'Text Processing Cost': text_costs,
'Audio Processing Cost': audio_costs
})
# Create the chart
fig = px.line(scaling_data, x='Users', y=['Text Processing Cost', 'Audio Processing Cost'],
markers=True, title="Cost Scaling by User Count",
color_discrete_sequence=["#3366CC", "#FF9900"])
if scale_type == "Logarithmic":
fig.update_layout(yaxis_type="log")
st.plotly_chart(fig, use_container_width=True)
# Break-even analysis
st.subheader("Break-even Analysis")
col1, col2 = st.columns(2)
with col1:
monthly_subscription = st.slider("Monthly Subscription ($)",
min_value=5.0, max_value=50.0, value=12.99, step=0.99)
text_usage = st.slider("Avg. Messages per User",
min_value=50, max_value=1000, value=300, step=50)
with col2:
audio_mins = st.slider("Avg. Audio Minutes per User",
min_value=1, max_value=60, value=10, step=1)
fixed_costs = st.number_input("Monthly Fixed Costs ($)",
min_value=0, value=2000, step=100)
# Calculate break-even points
text_cost_per_user = calculate_text_costs(1, text_usage, 15, 20)['total_cost']
audio_cost_per_user = calculate_audio_costs(1, audio_mins)['total_cost']
text_contribution = monthly_subscription - text_cost_per_user
audio_contribution = monthly_subscription - audio_cost_per_user
text_break_even = fixed_costs / text_contribution if text_contribution > 0 else float('inf')
audio_break_even = fixed_costs / audio_contribution if audio_contribution > 0 else float('inf')
# Display break-even metrics
col1, col2 = st.columns(2)
with col1:
st.metric("Text Break-even Users", f"{int(text_break_even)}")
st.metric("Text Margin per User",
f"${text_contribution:.2f} ({text_contribution/monthly_subscription*100:.1f}%)")
with col2:
st.metric("Audio Break-even Users", f"{int(audio_break_even)}")
st.metric("Audio Margin per User",
f"${audio_contribution:.2f} ({audio_contribution/monthly_subscription*100:.1f}%)")
# Create a combined visualization
st.subheader("Profit Analysis")
user_counts = list(range(0, 10001, 500))
text_profits = [(monthly_subscription - text_cost_per_user) * users - fixed_costs for users in user_counts]
audio_profits = [(monthly_subscription - audio_cost_per_user) * users - fixed_costs for users in user_counts]
profit_data = pd.DataFrame({
'Users': user_counts,
'Text Profit': text_profits,
'Audio Profit': audio_profits
})
fig = px.line(profit_data, x='Users', y=['Text Profit', 'Audio Profit'],
title="Profit by User Count",
labels={'value': 'Profit ($)', 'Users': 'Number of Users'},
color_discrete_sequence=["#3366CC", "#FF9900"])
fig.add_hline(y=0, line_dash="dash", line_color="red")
st.plotly_chart(fig, use_container_width=True)
# Business model recommendations
st.subheader("Business Model Recommendations")
if audio_cost_per_user > monthly_subscription:
st.warning(f"""
β οΈ Audio processing costs (${audio_cost_per_user:.2f}/user) exceed subscription price (${monthly_subscription:.2f}).
Consider increasing subscription price or implementing usage limits for audio features.
""")
recommended_model = "Text-Only" if text_contribution > audio_contribution else "Hybrid"
st.success(f"""
β
Recommended Business Model: **{recommended_model}**
Based on your inputs, a {'text-focused approach' if recommended_model == 'Text-Only' else 'hybrid approach with limited audio processing'}
would maximize profitability while maintaining competitive pricing.
""")
# Cost Calculator
elif page == "Cost Calculator":
st.header("Interactive Cost Calculator")
# Choose model type
model_type = st.selectbox("Select Model Type", ["Text", "Audio", "Hybrid"])
if model_type == "Text":
st.subheader("GPT-4o mini Text Model Calculator")
# Input parameters
col1, col2 = st.columns(2)
with col1:
total_users = st.number_input("Total Users", min_value=1, value=1000, step=100)
msgs_per_user = st.number_input("Monthly Messages per User", min_value=1, value=300, step=10)
input_tokens = st.number_input("Avg. Input Tokens per Message", min_value=1, value=15, step=1)
output_tokens = st.number_input("Avg. Output Tokens per Message", min_value=1, value=20, step=1)
with col2:
subscription_price = st.number_input("Monthly Subscription Price ($)",
min_value=0.0, value=12.99, step=0.99)
free_tier_ratio = st.slider("Free:Paid User Ratio",
min_value=0.0, max_value=20.0, value=9.0, step=0.1)
cached_pct = st.slider("% Cached Input",
min_value=0, max_value=100, value=0, step=5)
# Calculate values
free_users = int(total_users * (free_tier_ratio / (free_tier_ratio + 1)))
paid_users = total_users - free_users
# Free tier calculations
free_msgs_limit = 100 # Free tier message limit
free_total_msgs = free_users * min(msgs_per_user, free_msgs_limit)
# Token calculations
free_costs = calculate_text_costs(free_users, min(msgs_per_user, free_msgs_limit), input_tokens, output_tokens, cached_pct)
paid_costs = calculate_text_costs(paid_users, msgs_per_user, input_tokens, output_tokens, cached_pct)
total_cost = free_costs['total_cost'] + paid_costs['total_cost']
# Calculate revenue and profit
revenue = paid_users * subscription_price
profit = revenue - total_cost
margin = (profit / revenue) * 100 if revenue > 0 else 0
# Display results
st.subheader("Results")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Cost", f"${total_cost:.2f}")
with col2:
st.metric("Revenue", f"${revenue:.2f}")
with col3:
st.metric("Monthly Profit", f"${profit:.2f}")
with col4:
st.metric("Profit Margin", f"{margin:.1f}%")
# Detailed breakdown
with st.expander("See Detailed Cost Breakdown"):
st.markdown(f"""
### User Distribution
- Total Users: {total_users:,}
- Free Tier Users: {free_users:,} ({free_users/total_users*100:.1f}%)
- Paid Tier Users: {paid_users:,} ({paid_users/total_users*100:.1f}%)
### Token Usage
- Total Input Tokens: {free_costs['input_tokens'] + paid_costs['input_tokens']:,.0f}
- Total Output Tokens: {free_costs['output_tokens'] + paid_costs['output_tokens']:,.0f}
### Token Cost Breakdown
- Input Cost: ${free_costs['input_cost'] + paid_costs['input_cost']:.2f}
- Output Cost: ${free_costs['output_cost'] + paid_costs['output_cost']:.2f}
### Per User Economics
- Cost per Paid User: ${total_cost/paid_users:.4f} (if all costs allocated to paid users)
- Revenue per Paid User: ${subscription_price:.2f}
- Profit per Paid User: ${(revenue-total_cost)/paid_users:.2f}
""")
# Visualization
st.subheader("Cost vs Revenue")
fig = go.Figure()
fig.add_trace(go.Bar(
name='Free Tier Cost',
x=['Cost'],
y=[free_costs['total_cost']],
marker_color='#FF9900'
))
fig.add_trace(go.Bar(
name='Paid Tier Cost',
x=['Cost'],
y=[paid_costs['total_cost']],
marker_color='#FF5733'
))
fig.add_trace(go.Bar(
name='Revenue',
x=['Revenue'],
y=[revenue],
marker_color='#3366CC'
))
fig.update_layout(barmode='stack', title="Cost vs Revenue Breakdown")
st.plotly_chart(fig, use_container_width=True)
elif model_type == "Audio":
st.subheader("GPT-4o mini Audio Model Calculator")
# Input parameters
col1, col2 = st.columns(2)
with col1:
users = st.number_input("Number of Users", min_value=1, value=100, step=10)
audio_minutes = st.number_input("Minutes of Audio per User per Month", min_value=1, value=10, step=1)
tokens_per_second = st.number_input("Audio Tokens per Second", min_value=100, value=600, step=10)
cached_pct = st.slider("% Cached Input", min_value=0, max_value=100, value=20, step=5)
with col2:
output_ratio = st.slider("Output:Input Token Ratio", min_value=0.01, max_value=0.2, value=0.05, step=0.01)
subscription = st.number_input("Monthly Subscription ($)", min_value=0.0, value=29.99, step=0.99)
silence_reduction = st.slider("Silence Reduction %", min_value=0, max_value=50, value=20, step=5)
# Apply silence reduction to effective minutes
effective_minutes = audio_minutes * (1 - silence_reduction/100)
# Calculate costs
costs = calculate_audio_costs(users, effective_minutes, tokens_per_second, output_ratio, cached_pct)
# Calculate revenue and profit
revenue = users * subscription
profit = revenue - costs['total_cost']
margin = (profit / revenue) * 100 if revenue > 0 else 0
# Display results
st.subheader("Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Cost per Audio Minute", f"${costs['cost_per_minute']:.4f}")
st.metric("Total Monthly Cost", f"${costs['total_cost']:.2f}")
st.metric("Cost per User", f"${costs['total_cost']/users:.2f}")
with col2:
st.metric("Monthly Revenue", f"${revenue:.2f}")
st.metric("Monthly Profit", f"${profit:.2f}")
st.metric("Profit Margin", f"{margin:.1f}%")
|