Spaces:
Sleeping
Sleeping
import pandas as pd | |
import gradio as gr | |
from autogluon.text import TextPredictor | |
# Load your saved AutoGluon model | |
predictor = TextPredictor.load("trained_autogluon") | |
# Define a prediction function for text classification | |
def classify_text(text): | |
single_row = pd.DataFrame([text], columns=["text"]) | |
prediction = predictor.predict(single_row) | |
return prediction[0] | |
description_text = """ | |
This [model](https://huggingface.co/manifesto-project/manifestoberta-xlm-roberta-56policy-topics-sentence-2023-1-1) was trained on over 8000 German tweets. The label definitions can be found in this [handbook](https://manifesto-project.wzb.eu/coding_schemes/mp_v4) from the Manifesto Project. | |
With this app you can classify statements into political topics like this: | |
1. Enter some text in the input box. | |
2. Click 'Submit' or press 'Enter' to get the classification result. | |
3. If you want to know the label's definition, look it up [here](https://manifesto-project.wzb.eu/coding_schemes/mp_v4). | |
""" | |
# Create a Gradio interface | |
demo = gr.Interface( | |
fn=classify_text, | |
inputs="text", | |
outputs="label", | |
title="Manifestoberta fine-tuned on Politweets", | |
description=description_text | |
) | |
# Launch the app | |
demo.launch() |