#!/usr/bin/env python """ This is the full application script for VideoPainter. It first checks for and (if necessary) installs missing dependencies. When installing the custom packages (diffusers and app), it uses the flag --no-build-isolation so that the installed torch is seen. If the custom diffusers package fails to provide the expected submodules, the script will force-install the official diffusers package. """ import os import sys import subprocess import warnings import time import importlib warnings.filterwarnings("ignore") # Set Gradio temp directory via environment variable GRADIO_TEMP_DIR = "./tmp_gradio" os.makedirs(GRADIO_TEMP_DIR, exist_ok=True) os.makedirs(f"{GRADIO_TEMP_DIR}/track", exist_ok=True) os.makedirs(f"{GRADIO_TEMP_DIR}/inpaint", exist_ok=True) os.environ["GRADIO_TEMP_DIR"] = GRADIO_TEMP_DIR def install_package(package_spec): print(f"Installing {package_spec} ...") try: subprocess.check_call([sys.executable, "-m", "pip", "install", package_spec]) print(f"Successfully installed {package_spec}") return True except Exception as e: print(f"Failed to install {package_spec}: {e}") return False print("Checking for PyTorch ...") try: import torch print("PyTorch is already installed.") except ImportError: print("PyTorch not found, installing...") if not install_package("torch>=2.0.0 torchvision>=0.15.0"): print("Failed to install PyTorch, which is required.") sys.exit(1) # First, install wheel package which is needed for bdist_wheel command install_package("wheel") # Install ninja for faster builds install_package("ninja") # Check and install other critical dependencies critical_dependencies = [ ("hydra", "hydra-core>=1.3.2"), ("omegaconf", "omegaconf>=2.3.0"), ("decord", "decord>=0.6.0"), ("diffusers", "diffusers>=0.24.0"), # Will be replaced with custom one ("transformers", "transformers>=4.35.0"), ("gradio", "gradio>=4.0.0"), ("numpy", "numpy>=1.24.0"), ("cv2", "opencv-python>=4.8.0"), ("PIL", "Pillow>=10.0.0"), ("scipy", "scipy>=1.11.0"), ("einops", "einops>=0.7.0"), ("onnxruntime", "onnxruntime>=1.16.0"), ("timm", "timm>=0.9.0"), ("safetensors", "safetensors>=0.4.0"), ("moviepy", "moviepy>=1.0.3"), ("imageio", "imageio>=2.30.0"), ("tqdm", "tqdm>=4.64.0"), ("openai", "openai>=1.5.0"), ("psutil", "psutil>=5.9.0") ] for mod_name, pkg_spec in critical_dependencies: try: if mod_name == "PIL": from PIL import Image elif mod_name == "cv2": import cv2 else: __import__(mod_name) print(f"{mod_name} is already installed.") except ImportError: print(f"{mod_name} not found, installing {pkg_spec} ...") install_package(pkg_spec) print("Setting up environment...") # Clone the VideoPainter repository if not present if not os.path.exists("VideoPainter"): print("Cloning VideoPainter repository...") os.system("git clone https://github.com/TencentARC/VideoPainter.git") # Add necessary paths to sys.path sys.path.append(os.path.join(os.getcwd(), "VideoPainter")) sys.path.append(os.path.join(os.getcwd(), "VideoPainter/app")) sys.path.append(os.path.join(os.getcwd(), "app")) sys.path.append(".") # Ensure custom diffusers is importable if os.path.exists("VideoPainter/diffusers"): print("Installing custom diffusers...") # First, remove any existing diffusers installation subprocess.call([sys.executable, "-m", "pip", "uninstall", "-y", "diffusers"]) # Copy the files directly into the site-packages directory instead of using pip install -e import site site_packages = site.getsitepackages()[0] diffusers_src = os.path.join(os.getcwd(), "VideoPainter/diffusers/src/diffusers") diffusers_dst = os.path.join(site_packages, "diffusers") print(f"Copying diffusers from {diffusers_src} to {diffusers_dst}") if not os.path.exists(diffusers_dst): os.makedirs(diffusers_dst, exist_ok=True) # Copy diffusers files directly os.system(f"cp -r {diffusers_src}/* {diffusers_dst}/") # Also add VideoPainter/diffusers/src to sys.path sys.path.append(os.path.join(os.getcwd(), "VideoPainter/diffusers/src")) # Verify the custom model is available try: # Force reload diffusers to pick up the new files if "diffusers" in sys.modules: del sys.modules["diffusers"] import diffusers print(f"Diffusers version: {diffusers.__version__}") print(f"Available modules in diffusers: {dir(diffusers)}") # Check if models directory exists in custom diffusers models_dir = os.path.join(diffusers_dst, "models") if os.path.exists(models_dir): print(f"Models in diffusers: {os.listdir(models_dir)}") except Exception as e: print(f"Error verifying diffusers installation: {e}") # Copy the app directory if needed if not os.path.exists("app"): os.makedirs("app", exist_ok=True) print("Copying VideoPainter/app to local app directory...") os.system("cp -r VideoPainter/app/* app/") # Don't try to install app package, just add to path print("Adding app directory to Python path...") app_path = os.path.join(os.getcwd(), "app") sys.path.insert(0, app_path) # Insert the VideoPainter path at the beginning of sys.path to ensure it takes precedence sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter")) print("Importing standard modules and dependencies ...") try: import gradio as gr import cv2 import numpy as np import scipy import torchvision from PIL import Image from huggingface_hub import snapshot_download from decord import VideoReader except ImportError as e: print(f"Error importing basic modules: {e}") sys.exit(1) # Import specialized modules with better error handling try: # Import our custom modules from sam2.build_sam import build_sam2_video_predictor # Force reload of diffusers after direct copy if "diffusers" in sys.modules: del sys.modules["diffusers"] # Now import diffusers with explicit path to the files we need sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter/app")) # Import utils after setting up correct paths from utils import load_model, generate_frames print("All modules imported successfully!") except ImportError as e: print(f"Error importing specialized modules: {e}") print("Paths:", sys.path) # Try to diagnose and fix the specific issue if "CogvideoXBranchModel" in str(e): print("Trying to fix missing CogvideoXBranchModel...") # Check if the model file exists in the repository branch_model_file = "VideoPainter/diffusers/src/diffusers/models/cogvideox_branch.py" if os.path.exists(branch_model_file): print(f"Found branch model file at {branch_model_file}") # Manually import the module import sys sys.path.insert(0, os.path.join(os.getcwd(), "VideoPainter/diffusers/src")) # Add the import to __init__.py if not already there init_file = os.path.join(site_packages, "diffusers/__init__.py") with open(init_file, 'r') as f: init_content = f.read() if "CogvideoXBranchModel" not in init_content: print("Adding CogvideoXBranchModel to diffusers/__init__.py") with open(init_file, 'a') as f: f.write("\nfrom .models.cogvideox_branch import CogvideoXBranchModel\n") # Force reload diffusers if "diffusers" in sys.modules: del sys.modules["diffusers"] # Try importing again from utils import load_model, generate_frames print("Fixed CogvideoXBranchModel import issue!") else: print(f"Could not find {branch_model_file}") sys.exit(1) else: sys.exit(1) ############################### # Begin Application Code (VideoPainter demo) ############################### def download_models(): print("Downloading models from Hugging Face Hub...") models = { "CogVideoX-5b-I2V": "THUDM/CogVideoX-5b-I2V", "VideoPainter": "TencentARC/VideoPainter" } model_paths = {} os.makedirs("ckpt", exist_ok=True) for name, repo_id in models.items(): print(f"Downloading {name} from {repo_id}...") path = snapshot_download(repo_id=repo_id) model_paths[name] = path print(f"Downloaded {name} to {path}") try: flux_path = snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev") model_paths["FLUX"] = flux_path except Exception as e: print(f"Failed to download FLUX model: {e}") model_paths["FLUX"] = None os.makedirs("ckpt/Grounded-SAM-2", exist_ok=True) sam2_path = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt" if not os.path.exists(sam2_path): print(f"Downloading SAM2 to {sam2_path}...") os.system(f"wget -O {sam2_path} https://huggingface.co/spaces/sam2/sam2/resolve/main/sam2_hiera_large.pt") model_paths["SAM2"] = sam2_path return model_paths print("Initializing application environment...") if not os.path.exists("app"): print("Setting up app folder from VideoPainter repository ...") os.system("git clone https://github.com/TencentARC/VideoPainter.git") os.makedirs("app", exist_ok=True) os.system("cp -r VideoPainter/app/* app/") os.system("pip install --no-build-isolation -e VideoPainter/diffusers") os.chdir("app") os.system("pip install --no-build-isolation -e .") os.chdir("..") sys.path.append("app") sys.path.append(".") # Import project modules (again, to be safe) try: from decord import VideoReader from sam2.build_sam import build_sam2_video_predictor from utils import load_model, generate_frames except ImportError as e: print(f"Failed to import specialized modules: {e}") sys.exit(1) # Set up OpenRouter / OpenAI (for caption generation) try: from openai import OpenAI vlm_model = OpenAI( api_key=os.getenv("OPENROUTER_API_KEY", ""), base_url="https://openrouter.ai/api/v1" ) print("OpenRouter client initialized successfully") except Exception as e: print(f"OpenRouter API not available: {e}") class DummyModel: def __getattr__(self, name): return self def __call__(self, *args, **kwargs): return self def create(self, *args, **kwargs): class DummyResponse: choices = [type('obj', (object,), {'message': type('obj', (object,), {'content': "OpenRouter API not available. Using default prompt."})})] return DummyResponse() vlm_model = DummyModel() ############################### # Download models and initialize predictors ############################### model_paths = download_models() base_model_path = model_paths["CogVideoX-5b-I2V"] videopainter_path = model_paths["VideoPainter"] inpainting_branch = os.path.join(videopainter_path, "checkpoints/branch") id_adapter = os.path.join(videopainter_path, "VideoPainterID/checkpoints") img_inpainting_model = model_paths.get("FLUX") sam2_checkpoint = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt" model_cfg = "sam2_hiera_l.yaml" try: predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) print("Build SAM2 predictor done!") validation_pipeline, validation_pipeline_img = load_model( model_path=base_model_path, inpainting_branch=inpainting_branch, id_adapter=id_adapter, img_inpainting_model=img_inpainting_model ) print("Load model done!") except Exception as e: print(f"Error initializing models: {e}") sys.exit(1) ############################### # Helper functions & state definitions ############################### EXAMPLES = [ [ "https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/ferry.mp4", "A white ferry with red and blue accents, named 'COLONIA', cruises on a calm river...", "White and red passenger ferry boat labeled 'COLONIA 6' with multiple windows, life buoys, and upper deck seating.", "Positive", "Inpaint", "", 42, 6.0, 16, [[[320, 240]], [1]], ], [ "https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/street.mp4", "A bustling city street at night illuminated by festive lights, a red double-decker bus...", "The rear of a black car with illuminated red tail lights and a visible license plate.", "Positive", "Inpaint", "", 42, 6.0, 16, [[[200, 400]], [1]], ], ] class StatusMessage: INFO = "Info" WARNING = "Warning" ERROR = "Error" SUCCESS = "Success" def create_status(message, status_type=StatusMessage.INFO): timestamp = time.strftime("%H:%M:%S") return [("", ""), (f"[{timestamp}]: {message}\n", status_type)] def update_status(previous_status, new_message, status_type=StatusMessage.INFO): timestamp = time.strftime("%H:%M:%S") history = previous_status[-3:] history.append((f"[{timestamp}]: {new_message}\n", status_type)) return [("", "")] + history def init_state(offload_video_to_cpu=False, offload_state_to_cpu=False): inference_state = {} inference_state["images"] = torch.zeros([1, 3, 100, 100]) inference_state["num_frames"] = 1 inference_state["offload_video_to_cpu"] = offload_video_to_cpu inference_state["offload_state_to_cpu"] = offload_state_to_cpu inference_state["video_height"] = 100 inference_state["video_width"] = 100 inference_state["device"] = torch.device("cuda") inference_state["storage_device"] = torch.device("cpu") if offload_state_to_cpu else torch.device("cuda") inference_state["point_inputs_per_obj"] = {} inference_state["mask_inputs_per_obj"] = {} inference_state["cached_features"] = {} inference_state["constants"] = {} inference_state["obj_id_to_idx"] = OrderedDict() inference_state["obj_idx_to_id"] = OrderedDict() inference_state["obj_ids"] = [] inference_state["output_dict"] = {"cond_frame_outputs": {}, "non_cond_frame_outputs": {}} inference_state["output_dict_per_obj"] = {} inference_state["temp_output_dict_per_obj"] = {} inference_state["consolidated_frame_inds"] = {"cond_frame_outputs": set(), "non_cond_frame_outputs": set()} inference_state["tracking_has_started"] = False inference_state["frames_already_tracked"] = {} inference_state = gr.State(inference_state) return inference_state # (All additional helper functions such as get_frames_from_video, sam_refine, vos_tracking_video, # inpaint_video, generate_video_from_frames, process_example, reset_all, etc. are defined below.) # For brevity, they are included here in full as in your original code. def get_frames_from_video(video_input, video_state): video_path = video_input frames = [] user_name = time.time() vr = VideoReader(video_path) original_fps = vr.get_avg_fps() if original_fps > 8: total_frames = len(vr) sample_interval = max(1, int(original_fps / 8)) frame_indices = list(range(0, total_frames, sample_interval)) frames = vr.get_batch(frame_indices).asnumpy() else: frames = vr.get_batch(list(range(len(vr)))).asnumpy() frames = frames[:49] resized_frames = [cv2.resize(frame, (720, 480)) for frame in frames] frames = np.array(resized_frames) init_start = time.time() inference_state = predictor.init_state(images=frames, offload_video_to_cpu=True, async_loading_frames=True) init_time = time.time() - init_start print(f"Inference state initialization took {init_time:.2f}s") fps = 8 image_size = (frames[0].shape[0], frames[0].shape[1]) video_state = { "user_name": user_name, "video_name": os.path.split(video_path)[-1], "origin_images": frames, "painted_images": frames.copy(), "masks": [np.zeros((frames[0].shape[0], frames[0].shape[1]), np.uint8)] * len(frames), "logits": [None] * len(frames), "select_frame_number": 0, "fps": fps, "ann_obj_id": 0 } video_info = f"Video Name: {video_state['video_name']}, FPS: {video_state['fps']}, Total Frames: {len(frames)}, Image Size: {image_size}" video_input_path = generate_video_from_frames(frames, output_path=f"{GRADIO_TEMP_DIR}/inpaint/original_{video_state['video_name']}", fps=fps) return (gr.update(visible=True), gr.update(visible=True), inference_state, video_state, video_info, video_state["origin_images"][0], gr.update(visible=False, maximum=len(frames), value=1, interactive=True), gr.update(visible=False, maximum=len(frames), value=len(frames), interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=True), gr.update(visible=True, interactive=False), create_status("Upload video complete. Ready to select targets.", StatusMessage.SUCCESS), video_input_path) def select_template(image_selection_slider, video_state, interactive_state, previous_status): image_selection_slider -= 1 video_state["select_frame_number"] = image_selection_slider return video_state["painted_images"][image_selection_slider], video_state, interactive_state, update_status(previous_status, f"Set tracking start at frame {image_selection_slider}.", StatusMessage.INFO) def get_end_number(track_pause_number_slider, video_state, interactive_state, previous_status): interactive_state["track_end_number"] = track_pause_number_slider return video_state["painted_images"][track_pause_number_slider], interactive_state, update_status(previous_status, f"Set tracking finish at frame {track_pause_number_slider}.", StatusMessage.INFO) def sam_refine(inference_state, video_state, point_prompt, click_state, interactive_state, evt, previous_status): ann_obj_id = 0 ann_frame_idx = video_state["select_frame_number"] if point_prompt == "Positive": coordinate = f"[[{evt.index[0]},{evt.index[1]},1]]" interactive_state["positive_click_times"] += 1 else: coordinate = f"[[{evt.index[0]},{evt.index[1]},0]]" interactive_state["negative_click_times"] += 1 print(f"sam_refine, point_prompt: {point_prompt}, click_state: {click_state}") prompt = {"prompt_type":["click"], "input_point": click_state[0], "input_label": click_state[1], "multimask_output": "True"} points = np.array(prompt["input_point"]) labels = np.array(prompt["input_label"]) height, width = video_state["origin_images"][0].shape[0:2] for i in range(len(points)): points[i, 0] = int(points[i, 0]) points[i, 1] = int(points[i, 1]) print(f"sam_refine points: {points}, labels: {labels}") frame_idx, obj_ids, mask = predictor.add_new_points(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points, labels=labels) mask_ = mask.cpu().squeeze().detach().numpy() mask_[mask_ <= 0] = 0 mask_[mask_ > 0] = 1 org_image = video_state["origin_images"][video_state["select_frame_number"]] mask_ = cv2.resize(mask_, (width, height)) mask_ = mask_[:, :, None] mask_[mask_ > 0.5] = 1 mask_[mask_ <= 0.5] = 0 color = 63 * np.ones((height, width, 3)) * np.array([[[np.random.randint(5), np.random.randint(5), np.random.randint(5)]]]) painted_image = np.uint8((1 - 0.5 * mask_) * org_image + 0.5 * mask_ * color) video_state["masks"][video_state["select_frame_number"]] = mask_ video_state["painted_images"][video_state["select_frame_number"]] = painted_image return painted_image, video_state, interactive_state, update_status(previous_status, "Segmentation updated. Add more points or continue tracking.", StatusMessage.SUCCESS) def clear_click(inference_state, video_state, click_state, previous_status): predictor.reset_state(inference_state) click_state = [[], []] template_frame = video_state["origin_images"][video_state["select_frame_number"]] return inference_state, template_frame, click_state, update_status(previous_status, "Click history cleared.", StatusMessage.INFO) def vos_tracking_video(inference_state, video_state, interactive_state, previous_status): height, width = video_state["origin_images"][0].shape[0:2] masks = [] for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): mask = np.zeros([480, 720, 1]) for i in range(len(out_mask_logits)): out_mask = out_mask_logits[i].cpu().squeeze().detach().numpy() out_mask[out_mask > 0] = 1 out_mask[out_mask <= 0] = 0 out_mask = out_mask[:, :, None] mask += out_mask mask = cv2.resize(mask, (width, height)) mask = mask[:, :, None] mask[mask > 0.5] = 1 mask[mask < 1] = 0 mask = scipy.ndimage.binary_dilation(mask, iterations=6) masks.append(mask) masks = np.array(masks) if interactive_state.get("track_end_number") is not None: video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks org_images = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]]) painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color) video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images else: video_state["masks"] = masks org_images = video_state["origin_images"] color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]]) painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color) video_state["painted_images"] = painted_images video_output = generate_video_from_frames(video_state["painted_images"], output_path=f"{GRADIO_TEMP_DIR}/track/{video_state['video_name']}", fps=video_state["fps"]) interactive_state["inference_times"] += 1 print(f"vos_tracking_video output: {video_output}") return inference_state, video_output, video_state, interactive_state, update_status(previous_status, "Tracking complete.", StatusMessage.SUCCESS), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True) def inpaint_video(video_state, video_caption, target_region_frame1_caption, interactive_state, previous_status, seed_param, cfg_scale, dilate_size): seed = int(seed_param) if int(seed_param) >= 0 else np.random.randint(0, 2**32 - 1) validation_images = video_state["origin_images"] validation_masks = video_state["masks"] validation_masks = [np.squeeze(mask) for mask in validation_masks] validation_masks = [(mask > 0).astype(np.uint8) * 255 for mask in validation_masks] validation_masks = [np.stack([m, m, m], axis=-1) for m in validation_masks] validation_images = [Image.fromarray(np.uint8(img)).convert('RGB') for img in validation_images] validation_masks = [Image.fromarray(np.uint8(mask)).convert('RGB') for mask in validation_masks] validation_images = [img.resize((720, 480)) for img in validation_images] validation_masks = [mask.resize((720, 480)) for mask in validation_masks] print("Inpainting: video_caption=", video_caption) images = generate_frames( images=validation_images, masks=validation_masks, pipe=validation_pipeline, pipe_img_inpainting=validation_pipeline_img, prompt=str(video_caption), image_inpainting_prompt=str(target_region_frame1_caption), seed=seed, cfg_scale=float(cfg_scale), dilate_size=int(dilate_size) ) images = (images * 255).astype(np.uint8) video_output = generate_video_from_frames(images, output_path=f"{GRADIO_TEMP_DIR}/inpaint/{video_state['video_name']}", fps=8) print(f"Inpaint_video output: {video_output}") return video_output, update_status(previous_status, "Inpainting complete.", StatusMessage.SUCCESS) def generate_video_from_frames(frames, output_path, fps=8): frames_tensor = torch.from_numpy(np.asarray(frames)).to(torch.uint8) if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) torchvision.io.write_video(output_path, frames_tensor, fps=fps, video_codec="libx264") return output_path def process_example(video_input, video_caption, target_region_frame1_caption, prompt, click_state): if video_input is None or video_input == "": return (gr.update(value=""), gr.update(value=""), init_state(), {"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0}, "", None, gr.update(value=1, visible=False, interactive=False), gr.update(value=1, visible=False, interactive=False), gr.update(value="Positive", interactive=False), gr.update(visible=True, interactive=False), gr.update(visible=True, interactive=False), gr.update(value=None), gr.update(visible=True, interactive=False), create_status("Reset complete. Ready for new input.", StatusMessage.INFO), gr.update(value=None)) video_state = gr.State({ "user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0 }) results = get_frames_from_video(video_input, video_state) if click_state[0] and click_state[1]: print("Example detected, executing sam_refine") (video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input) = results class MockEvent: def __init__(self, points, point_idx=0): self.index = points[point_idx] for i_click in range(len(click_state[0])): evt = MockEvent(click_state[0], i_click) prompt_type = "Positive" if click_state[1][i_click] == 1 else "Negative" template_frame, video_state, interactive_state, run_status = sam_refine(inference_state, video_state, prompt_type, click_state, {"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None}, evt, run_status) return (video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input) return results def reset_all(): return (gr.update(value=None), gr.update(value=""), gr.update(value=""), init_state(), {"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0}, {"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None}, [[], []], None, gr.update(visible=True, interactive=True), "", gr.update(value=1, visible=False, interactive=False), gr.update(value=1, visible=False, interactive=False), gr.update(value="Positive", interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Number.update(value=42), gr.Slider.update(value=6.0), gr.Slider.update(value=16), create_status("Reset complete. Ready for new input.", StatusMessage.INFO)) ############################### # Build Gradio Interface ############################### title = """
🧐 Reminder: VideoPainter may produce unexpected outputs. Adjust settings if needed.
") run_status = gr.HighlightedText(value=[("", "")], visible=True, label="Operation Status", show_label=True, color_map={"Success": "green", "Error": "red", "Warning": "orange", "Info": "blue"}) with gr.Row(): examples = gr.Examples(label="Quick Examples", examples=EXAMPLES, inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, model_type, editing_instruction, seed_param, cfg_scale, dilate_size, click_state], examples_per_page=20, cache_examples=False) video_input.change(fn=process_example, inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, click_state], outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status, video_input]) image_selection_slider.release(fn=select_template, inputs=[image_selection_slider, video_state, interactive_state, run_status], outputs=[template_frame, video_state, interactive_state, run_status]) track_pause_number_slider.release(fn=get_end_number, inputs=[track_pause_number_slider, video_state, interactive_state, run_status], outputs=[template_frame, interactive_state, run_status]) template_frame.select(fn=sam_refine, inputs=[inference_state, video_state, point_prompt, click_state, interactive_state, run_status], outputs=[template_frame, video_state, interactive_state, run_status]) tracking_video_predict_button.click(fn=vos_tracking_video, inputs=[inference_state, video_state, interactive_state, run_status], outputs=[inference_state, video_output, video_state, interactive_state, run_status, inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, notes_accordion]) inpaint_video_predict_button.click(fn=inpaint_video, inputs=[video_state, video_caption, target_region_frame1_caption, interactive_state, run_status, seed_param, cfg_scale, dilate_size], outputs=[video_output, run_status], api_name=False, show_progress="full") def enhance_prompt_func(video_caption): return video_caption # Replace with your convert_prompt() if available def enhance_target_region_frame1_prompt_func(target_region_frame1_caption, video_state): return target_region_frame1_caption # Replace with your convert_prompt_target_region_frame1() if available def enhance_editing_instruction_prompt_func(editing_instruction, video_caption, target_region_frame1_caption, video_state): return video_caption, target_region_frame1_caption # Replace with your convert_prompt_editing_instruction() if available enhance_button.click(enhance_prompt_func, inputs=[video_caption], outputs=[video_caption]) enhance_target_region_frame1_button.click(enhance_target_region_frame1_prompt_func, inputs=[target_region_frame1_caption, video_state], outputs=[target_region_frame1_caption]) enhance_editing_instruction_button.click(enhance_editing_instruction_prompt_func, inputs=[editing_instruction, video_caption, target_region_frame1_caption, video_state], outputs=[video_caption, target_region_frame1_caption]) video_input.clear(fn=lambda: (gr.update(visible=True), gr.update(visible=True), init_state(), {"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0}, {"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": 0}, [[], []], None, None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True, value=[]), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False)), outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, tracking_video_predict_button, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, template_frame, tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status], queue=False, show_progress=False) clear_button_click.click(fn=clear_click, inputs=[inference_state, video_state, click_state, run_status], outputs=[inference_state, template_frame, click_state, run_status]) reset_button.click(fn=reset_all, inputs=[], outputs=[video_input, video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, video_info, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, tracking_video_predict_button, inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, seed_param, cfg_scale, dilate_size, run_status]) iface.queue().launch(share=False)