from dotenv import load_dotenv import gradio as gr import os from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from sentence_transformers import SentenceTransformer import csv import os PERSIST_DIR = "history" # Replace with your actual directory path CSV_FILE = os.path.join(PERSIST_DIR, "chat_history.csv") # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Variable to store current chat conversation current_chat_history = [] def data_ingestion_from_directory(): # Use SimpleDirectoryReader on the directory containing the PDF files documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): # Ensure the directory exists or create it os.makedirs(PERSIST_DIR, exist_ok=True) chat_text_qa_msgs = [ ( "user", """ As FernAI, your goal is to offer top-tier service and information about RedFerns Tech company. Provide concise answers based on the conversation flow. Ultimately, aim to attract users to connect with our services. Summarize responses effectively in 20-60 words without unnecessary repetition. {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response (assuming current_chat_history is defined) context_str = "" for past_query, response in reversed(current_chat_history): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." # Update current chat history current_chat_history.append((query, response)) # Save chat history to CSV with open(CSV_FILE, 'a', newline='', encoding='utf-8') as file: csv_writer = csv.writer(file) csv_writer.writerow([query, response]) return response # Example usage: Process PDF ingestion from directory print("Processing PDF ingestion from directory:", PDF_DIRECTORY) data_ingestion_from_directory() # Define the function to handle predictions """def predict(message,history): response = handle_query(message) return response""" def predict(message, history): # Your logo HTML code logo_html = '''