import gradio as gr import os from dotenv import load_dotenv from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from simple_salesforce import Salesforce, SalesforceLogin import random import datetime # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Variable to store current chat conversation in a dictionary current_chat_history = {} kkk = random.choice(['Clara', 'Lily']) def data_ingestion_from_directory(): # Use SimpleDirectoryReader on the directory containing the PDF files documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): chat_text_qa_msgs = [ ( "user", """ You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response context_str = "" for past_query, response in reversed(current_chat_history.values()): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." # Update current chat history dictionary (use unique ID as key) chat_id = str(datetime.datetime.now().timestamp()) current_chat_history[chat_id] = (query, response) return response def save_chat_history_to_salesforce(): username =os.getenv("username") password =os.getenv("password") security_token =os.getenv("security_token") domain = 'test' # Log in to Salesforce session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain) # Create Salesforce object sf = Salesforce(instance=sf_instance, session_id=session_id) # Iterate over chat history dictionary and push to Salesforce for chat_id, (user_message, bot_response) in current_chat_history.items(): data = { 'Name': 'Chat with user', 'Bot_Message__c': bot_response, 'User_Message__c': user_message, 'Date__c': str(datetime.datetime.now().date()) } # Insert into the custom object (replace 'Chat_History__c' with your custom object's API name) sf.Chat_History__c.create(data) # Define the function to handle predictions def predict(message, history): logo_html = '''