import gradio as gr import os from http.cookies import SimpleCookie from dotenv import load_dotenv from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding import random import datetime # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Function to save chat history to cookies def save_chat_history_to_cookies(chat_id, query, response, cookies): if cookies is None: cookies = {} history = cookies.get('chat_history', '[]') history_list = eval(history) history_list.append({ "chat_id": chat_id, "query": query, "response": response, "timestamp": str(datetime.datetime.now()) }) cookies['chat_history'] = str(history_list) def handle_query(query, cookies=None): chat_text_qa_msgs = [ ( "user", """ You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response context_str = "" if cookies: history = cookies.get('chat_history', '[]') history_list = eval(history) for entry in reversed(history_list): if entry["query"].strip(): context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." # Update current chat history dictionary (use unique ID as key) chat_id = str(datetime.datetime.now().timestamp()) save_chat_history_to_cookies(chat_id, query, response, cookies) return response # Define your Gradio chat interface function def chat_interface(message, history): cookies = {} # You might need to get cookies from the request in a real implementation try: # Process the user message and generate a response response = handle_query(message, cookies) # Return the bot response return response except Exception as e: return str(e) # Custom CSS for styling css = ''' .circle-logo { display: inline-block; width: 40px; height: 40px; border-radius: 50%; overflow: hidden; margin-right: 10px; vertical-align: middle; } .circle-logo img { width: 100%; height: 100%; object-fit: cover; } .response-with-logo { display: flex; align-items: center; margin-bottom: 10px; } footer { display: none !important; background-color: #F8D7DA; } label.svelte-1b6s6s {display: none} div.svelte-rk35yg {display: none;} div.svelte-1rjryqp{display: none;} div.progress-text.svelte-z7cif2.meta-text {display: none;} ''' # Use Gradio Blocks to wrap components chat = gr.ChatInterface(chat_interface, css=css, clear_btn=None, undo_btn=None, retry_btn=None).launch() # Launch the Gradio interface