import gradio as gr import os from http.cookies import SimpleCookie from dotenv import load_dotenv from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI # Updated import from llama_index.embeddings.huggingface import HuggingFaceEmbedding import random import datetime # Load environment variables load_dotenv() # Configure the Llama index settings with updated API Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Function to save chat history to cookies def save_chat_history_to_cookies(chat_id, query, response, cookies): if cookies is None: cookies = {} history = cookies.get('chat_history', '[]') history_list = eval(history) history_list.append({ "chat_id": chat_id, "query": query, "response": response, "timestamp": str(datetime.datetime.now()) }) cookies['chat_history'] = str(history_list) def handle_query(query, cookies=None): chat_text_qa_msgs = [ ( "user", """ You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response context_str = "" if cookies: history = cookies.get('chat_history', '[]') history_list = eval(history) for entry in reversed(history_list): if entry["query"].strip(): context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." # Update current chat history dictionary (use unique ID as key) chat_id = str(datetime.datetime.now().timestamp()) save_chat_history_to_cookies(chat_id, query, response, cookies) return response # Define the button click function def retrieve_history_and_redirect(): # Directly save the chat history without displaying any message return # Define your Gradio chat interface function def chat_interface(message, history): cookies = {} # You might need to get cookies from the request in a real implementation try: # Process the user message and generate a response response = handle_query(message, cookies) # Return the bot response return response except Exception as e: return str(e) # Custom CSS for styling css = ''' .circle-logo { display: inline-block; width: 40px; height: 40px; border-radius: 50%; overflow: hidden; margin-right: 10px; vertical-align: middle; } .circle-logo img { width: 100%; height: 100%; object-fit: cover; } .response-with-logo { display: flex; align-items: center; margin-bottom: 10px; } footer { display: none !important; background-color: #F8D7DA; } label.svelte-1b6s6s {display: none} div.svelte-rk35yg {display: none;} div.svelte-1rjryqp{display: none;} div.progress-text.svelte-z7cif2.meta-text {display: none;} ''' # Use Gradio Blocks to wrap components with gr.Blocks(css=css) as demo: chat = gr.ChatInterface(chat_interface, clear_btn=None, undo_btn=None, retry_btn=None) # Button to retrieve history and redirect redirect_button = gr.Button("Retrieve History & Redirect") # Connect the button with the function, and handle the redirection redirect_button.click(fn=retrieve_history_and_redirect) # Add a JavaScript function to handle redirection after the Gradio event is processed redirect_button.click(fn=None,js="() => { window.open('https://redfernstech.com/chat-bot-test', '_blank'); }") # Launch the Gradio interface demo.launch()