Spaces:
Runtime error
Runtime error
| from dotenv import load_dotenv | |
| import gradio as gr | |
| import os | |
| from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
| from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from sentence_transformers import SentenceTransformer | |
| # Load environment variables | |
| load_dotenv() | |
| # Configure the Llama index settings | |
| Settings.llm = HuggingFaceInferenceAPI( | |
| model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
| tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
| context_window=3000, | |
| token=os.getenv("HF_TOKEN"), | |
| max_new_tokens=512, | |
| generate_kwargs={"temperature": 0.1}, | |
| ) | |
| Settings.embed_model = HuggingFaceEmbedding( | |
| model_name="BAAI/bge-small-en-v1.5" | |
| ) | |
| # Define the directory for persistent storage and data | |
| PERSIST_DIR = "db" | |
| PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs | |
| # Ensure directories exist | |
| os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
| os.makedirs(PERSIST_DIR, exist_ok=True) | |
| # Variable to store current chat conversation | |
| current_chat_history = [] | |
| def data_ingestion_from_directory(): | |
| # Use SimpleDirectoryReader on the directory containing the PDF files | |
| documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
| storage_context = StorageContext.from_defaults() | |
| index = VectorStoreIndex.from_documents(documents) | |
| index.storage_context.persist(persist_dir=PERSIST_DIR) | |
| def handle_query(message, history): | |
| # Prepare the chat history for context | |
| chat_history = [[msg["text"], ""] for msg in history] | |
| # Prepare the chat prompt template | |
| chat_text_qa_msgs = [ | |
| ( | |
| "user", | |
| f"You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.\n\nQuestion:\n{message}" | |
| ) | |
| ] | |
| text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
| # Load index from storage | |
| storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
| index = load_index_from_storage(storage_context) | |
| # Use the Llama index to generate a response | |
| query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str="") | |
| answer = query_engine.query(message) | |
| if hasattr(answer, 'response'): | |
| response = answer.response | |
| elif isinstance(answer, dict) and 'response' in answer: | |
| response = answer['response'] | |
| else: | |
| response = "Sorry, I couldn't find an answer." | |
| # Update chat history with the current interaction | |
| chat_history.append([message, response]) | |
| return response | |
| # Example usage: Process PDF ingestion from directory | |
| print("Processing PDF ingestion from directory:", PDF_DIRECTORY) | |
| data_ingestion_from_directory() | |
| # Create the Gradio interface | |
| interface = gr.ChatInterface( | |
| fn=handle_query, | |
| examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}], | |
| title="RedfernsTech Q&A Chatbot", | |
| description="Ask me anything about the uploaded document." | |
| ) | |
| # Launch the Gradio interface | |
| interface.launch() | |