Spaces:
Sleeping
Sleeping
Upload clean.py
Browse files
clean.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import re
|
2 |
-
|
3 |
-
|
4 |
-
from
|
|
|
|
|
|
|
5 |
import time
|
|
|
6 |
|
7 |
# Constants
|
8 |
EMPTY_THRESHOLD = 0.5
|
@@ -11,183 +15,253 @@ VALID_DATA_THRESHOLD = 0.5
|
|
11 |
|
12 |
def print_dataframe_info(df, step=""):
|
13 |
num_columns = len(df.columns)
|
14 |
-
num_rows =
|
15 |
num_cells = num_columns * num_rows
|
16 |
print(f"{step}Dataframe info:")
|
17 |
print(f" Number of columns: {num_columns}")
|
18 |
print(f" Number of rows: {num_rows}")
|
19 |
print(f" Total number of cells: {num_cells}")
|
20 |
|
|
|
21 |
def check_and_normalize_column_headers(df):
|
22 |
print("Checking and normalizing column headers...")
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
print("Column names have been normalized.")
|
26 |
return df
|
27 |
|
|
|
28 |
def remove_empty_columns(df, threshold=EMPTY_THRESHOLD):
|
29 |
print(f"Removing columns with less than {threshold * 100}% valid data...")
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def remove_empty_rows(df, threshold=EMPTY_THRESHOLD):
|
33 |
print(f"Removing rows with less than {threshold * 100}% valid data...")
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def drop_rows_with_nas(df, threshold=VALID_DATA_THRESHOLD):
|
37 |
print(f"Dropping rows with NAs for columns with more than {threshold * 100}% valid data...")
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def check_typos(df, column_name, threshold=2, top_n=100):
|
42 |
-
if
|
|
|
43 |
print(f"Skipping typo check for column {column_name} as it is not a string type.")
|
44 |
return None
|
45 |
|
46 |
print(f"Checking for typos in column: {column_name}")
|
47 |
|
48 |
try:
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
def find_similar_strings(value):
|
53 |
-
if
|
54 |
return []
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
typos_df =
|
59 |
|
60 |
-
|
|
|
61 |
if typo_count > 0:
|
62 |
print(f"Potential typos found in column {column_name}: {typo_count}")
|
63 |
-
|
64 |
return typos_df
|
65 |
else:
|
66 |
print(f"No potential typos found in column {column_name}")
|
67 |
return None
|
68 |
|
|
|
|
|
|
|
69 |
except Exception as e:
|
70 |
print(f"Unexpected error in check_typos for column {column_name}: {str(e)}")
|
71 |
return None
|
72 |
|
73 |
-
def levenshtein_distance(s1, s2):
|
74 |
-
if len(s1) < len(s2):
|
75 |
-
return levenshtein_distance(s2, s1)
|
76 |
-
if len(s2) == 0:
|
77 |
-
return len(s1)
|
78 |
-
previous_row = range(len(s2) + 1)
|
79 |
-
for i, c1 in enumerate(s1):
|
80 |
-
current_row = [i + 1]
|
81 |
-
for j, c2 in enumerate(s2):
|
82 |
-
insertions = previous_row[j + 1] + 1
|
83 |
-
deletions = current_row[j] + 1
|
84 |
-
substitutions = previous_row[j] + (c1 != c2)
|
85 |
-
current_row.append(min(insertions, deletions, substitutions))
|
86 |
-
previous_row = current_row
|
87 |
-
return previous_row[-1]
|
88 |
|
89 |
def transform_string_column(df, column_name):
|
90 |
print(f"Transforming string column: {column_name}")
|
91 |
-
|
92 |
-
df
|
93 |
-
|
94 |
-
df
|
|
|
|
|
|
|
|
|
95 |
return df
|
96 |
|
|
|
97 |
def clean_column(df, column_name):
|
98 |
print(f"Cleaning column: {column_name}")
|
99 |
start_time = perf_counter()
|
|
|
|
|
100 |
|
101 |
-
if
|
102 |
typos_df = check_typos(df, column_name)
|
103 |
-
if typos_df is not None and
|
104 |
print(f"Detailed typos for column {column_name}:")
|
105 |
-
|
106 |
df = transform_string_column(df, column_name)
|
107 |
-
|
108 |
-
|
|
|
|
|
109 |
|
110 |
end_time = perf_counter()
|
111 |
print(f"Time taken to clean {column_name}: {end_time - start_time:.6f} seconds")
|
112 |
return df
|
113 |
|
|
|
114 |
def remove_outliers(df, column):
|
115 |
print(f"Removing outliers from column: {column}")
|
116 |
-
|
117 |
-
|
|
|
|
|
118 |
iqr = q3 - q1
|
119 |
lower_bound = q1 - 1.5 * iqr
|
120 |
upper_bound = q3 + 1.5 * iqr
|
121 |
-
|
|
|
|
|
122 |
|
123 |
def calculate_nonconforming_cells(df):
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def get_numeric_columns(df):
|
127 |
-
return
|
128 |
|
129 |
def remove_duplicates_from_primary_key(df, primary_key_column):
|
130 |
print(f"Removing duplicates based on primary key column: {primary_key_column}")
|
131 |
-
return df.
|
132 |
|
133 |
-
def clean_data(df, primary_key_column, progress):
|
134 |
start_time = time.time()
|
135 |
process_times = {}
|
136 |
|
137 |
print("Starting data validation and cleaning...")
|
138 |
print_dataframe_info(df, "Initial - ")
|
139 |
|
|
|
140 |
nonconforming_cells_before = calculate_nonconforming_cells(df)
|
141 |
|
|
|
142 |
progress(0.1, desc="Normalizing column headers")
|
143 |
step_start_time = time.time()
|
144 |
df = check_and_normalize_column_headers(df)
|
145 |
process_times['Normalize headers'] = time.time() - step_start_time
|
146 |
|
|
|
147 |
progress(0.2, desc="Removing empty columns")
|
148 |
step_start_time = time.time()
|
149 |
df = remove_empty_columns(df)
|
150 |
-
print('2) count of valid rows:',
|
151 |
process_times['Remove empty columns'] = time.time() - step_start_time
|
152 |
|
|
|
153 |
progress(0.3, desc="Removing empty rows")
|
154 |
step_start_time = time.time()
|
155 |
df = remove_empty_rows(df)
|
156 |
-
print('3) count of valid rows:',
|
157 |
process_times['Remove empty rows'] = time.time() - step_start_time
|
158 |
|
|
|
159 |
progress(0.4, desc="Dropping rows with NAs")
|
160 |
step_start_time = time.time()
|
161 |
df = drop_rows_with_nas(df)
|
162 |
-
print('4) count of valid rows:',
|
163 |
process_times['Drop rows with NAs'] = time.time() - step_start_time
|
164 |
|
|
|
165 |
column_cleaning_times = {}
|
166 |
total_columns = len(df.columns)
|
167 |
for index, column in enumerate(df.columns):
|
168 |
progress(0.5 + (0.2 * (index / total_columns)), desc=f"Cleaning column: {column}")
|
169 |
column_start_time = time.time()
|
170 |
df = clean_column(df, column)
|
171 |
-
print('5) count of valid rows:',
|
172 |
column_cleaning_times[f"Clean column: {column}"] = time.time() - column_start_time
|
173 |
process_times.update(column_cleaning_times)
|
174 |
|
|
|
175 |
progress(0.7, desc="Removing outliers")
|
176 |
step_start_time = time.time()
|
177 |
numeric_columns = get_numeric_columns(df)
|
178 |
numeric_columns = [col for col in numeric_columns if col != primary_key_column]
|
179 |
for column in numeric_columns:
|
180 |
df = remove_outliers(df, column)
|
181 |
-
print('6) count of valid rows:',
|
182 |
process_times['Remove outliers'] = time.time() - step_start_time
|
183 |
|
|
|
184 |
progress(0.8, desc="Removing duplicates from primary key")
|
185 |
step_start_time = time.time()
|
186 |
df = remove_duplicates_from_primary_key(df, primary_key_column)
|
187 |
-
print('7) count of valid rows:',
|
188 |
-
process_times['Remove duplicates from primary key'] = time.time() - step_start_time
|
189 |
|
190 |
print("Cleaning process completed.")
|
191 |
print_dataframe_info(df, "Final - ")
|
192 |
|
193 |
-
return df, nonconforming_cells_before, process_times
|
|
|
1 |
import re
|
2 |
+
|
3 |
+
from pyspark.sql import SparkSession
|
4 |
+
from pyspark.sql.functions import col, isnan, when, count, lower, regexp_replace, to_date, to_timestamp, udf, \
|
5 |
+
levenshtein, array, lit, trim, size, coalesce
|
6 |
+
from pyspark.sql.types import DoubleType, IntegerType, StringType, DateType, TimestampType, ArrayType
|
7 |
+
from pyspark.sql.utils import AnalysisException
|
8 |
import time
|
9 |
+
from time import perf_counter
|
10 |
|
11 |
# Constants
|
12 |
EMPTY_THRESHOLD = 0.5
|
|
|
15 |
|
16 |
def print_dataframe_info(df, step=""):
|
17 |
num_columns = len(df.columns)
|
18 |
+
num_rows = df.count()
|
19 |
num_cells = num_columns * num_rows
|
20 |
print(f"{step}Dataframe info:")
|
21 |
print(f" Number of columns: {num_columns}")
|
22 |
print(f" Number of rows: {num_rows}")
|
23 |
print(f" Total number of cells: {num_cells}")
|
24 |
|
25 |
+
|
26 |
def check_and_normalize_column_headers(df):
|
27 |
print("Checking and normalizing column headers...")
|
28 |
+
|
29 |
+
for old_name in df.columns:
|
30 |
+
# Create the new name using string manipulation
|
31 |
+
new_name = old_name.lower().replace(' ', '_')
|
32 |
+
|
33 |
+
# Remove any non-alphanumeric characters (excluding underscores)
|
34 |
+
new_name = re.sub(r'[^0-9a-zA-Z_]', '', new_name)
|
35 |
+
|
36 |
+
# Rename the column
|
37 |
+
df = df.withColumnRenamed(old_name, new_name)
|
38 |
+
|
39 |
print("Column names have been normalized.")
|
40 |
return df
|
41 |
|
42 |
+
|
43 |
def remove_empty_columns(df, threshold=EMPTY_THRESHOLD):
|
44 |
print(f"Removing columns with less than {threshold * 100}% valid data...")
|
45 |
+
|
46 |
+
# Calculate the percentage of non-null values for each column
|
47 |
+
df_stats = df.select(
|
48 |
+
[((count(when(col(c).isNotNull(), c)) / count('*')) >= threshold).alias(c) for c in df.columns])
|
49 |
+
valid_columns = [c for c in df_stats.columns if df_stats.select(c).first()[0]]
|
50 |
+
|
51 |
+
return df.select(valid_columns)
|
52 |
+
|
53 |
|
54 |
def remove_empty_rows(df, threshold=EMPTY_THRESHOLD):
|
55 |
print(f"Removing rows with less than {threshold * 100}% valid data...")
|
56 |
+
|
57 |
+
# Count the number of non-null values for each row
|
58 |
+
expr = sum([when(col(c).isNotNull(), lit(1)).otherwise(lit(0)) for c in df.columns])
|
59 |
+
df_valid_count = df.withColumn('valid_count', expr)
|
60 |
+
|
61 |
+
# Filter rows based on the threshold
|
62 |
+
total_columns = len(df.columns)
|
63 |
+
df_filtered = df_valid_count.filter(col('valid_count') >= threshold * total_columns)
|
64 |
+
|
65 |
+
print('count of valid rows:', df_filtered.count())
|
66 |
+
|
67 |
+
return df_filtered.drop('valid_count')
|
68 |
+
|
69 |
|
70 |
def drop_rows_with_nas(df, threshold=VALID_DATA_THRESHOLD):
|
71 |
print(f"Dropping rows with NAs for columns with more than {threshold * 100}% valid data...")
|
72 |
+
|
73 |
+
# Calculate the percentage of non-null values for each column
|
74 |
+
df_stats = df.select([((count(when(col(c).isNotNull(), c)) / count('*'))).alias(c) for c in df.columns])
|
75 |
+
|
76 |
+
# Get columns with more than threshold valid data
|
77 |
+
valid_columns = [c for c in df_stats.columns if df_stats.select(c).first()[0] > threshold]
|
78 |
+
|
79 |
+
# Drop rows with NAs only for the valid columns
|
80 |
+
for column in valid_columns:
|
81 |
+
df = df.filter(col(column).isNotNull())
|
82 |
+
|
83 |
+
return df
|
84 |
|
85 |
def check_typos(df, column_name, threshold=2, top_n=100):
|
86 |
+
# Check if the column is of StringType
|
87 |
+
if not isinstance(df.schema[column_name].dataType, StringType):
|
88 |
print(f"Skipping typo check for column {column_name} as it is not a string type.")
|
89 |
return None
|
90 |
|
91 |
print(f"Checking for typos in column: {column_name}")
|
92 |
|
93 |
try:
|
94 |
+
# Get value counts for the specific column
|
95 |
+
value_counts = df.groupBy(column_name).count().orderBy("count", ascending=False)
|
96 |
+
|
97 |
+
# Take top N most frequent values
|
98 |
+
top_values = [row[column_name] for row in value_counts.limit(top_n).collect()]
|
99 |
|
100 |
+
# Broadcast the top values to all nodes
|
101 |
+
broadcast_top_values = df.sparkSession.sparkContext.broadcast(top_values)
|
102 |
+
|
103 |
+
# Define UDF to find similar strings
|
104 |
+
@udf(returnType=ArrayType(StringType()))
|
105 |
def find_similar_strings(value):
|
106 |
+
if value is None:
|
107 |
return []
|
108 |
+
similar = []
|
109 |
+
for top_value in broadcast_top_values.value:
|
110 |
+
if value != top_value and levenshtein(value, top_value) <= threshold:
|
111 |
+
similar.append(top_value)
|
112 |
+
return similar
|
113 |
+
|
114 |
+
# Apply the UDF to the column
|
115 |
+
df_with_typos = df.withColumn("possible_typos", find_similar_strings(col(column_name)))
|
116 |
|
117 |
+
# Filter rows with possible typos and select only the relevant columns
|
118 |
+
typos_df = df_with_typos.filter(size("possible_typos") > 0).select(column_name, "possible_typos")
|
119 |
|
120 |
+
# Check if there are any potential typos
|
121 |
+
typo_count = typos_df.count()
|
122 |
if typo_count > 0:
|
123 |
print(f"Potential typos found in column {column_name}: {typo_count}")
|
124 |
+
typos_df.show(10, truncate=False)
|
125 |
return typos_df
|
126 |
else:
|
127 |
print(f"No potential typos found in column {column_name}")
|
128 |
return None
|
129 |
|
130 |
+
except AnalysisException as e:
|
131 |
+
print(f"Error analyzing column {column_name}: {str(e)}")
|
132 |
+
return None
|
133 |
except Exception as e:
|
134 |
print(f"Unexpected error in check_typos for column {column_name}: {str(e)}")
|
135 |
return None
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def transform_string_column(df, column_name):
|
139 |
print(f"Transforming string column: {column_name}")
|
140 |
+
# Lower case transformation (if applicable)
|
141 |
+
df = df.withColumn(column_name, lower(col(column_name)))
|
142 |
+
# Remove leading and trailing spaces
|
143 |
+
df = df.withColumn(column_name, trim(col(column_name)))
|
144 |
+
# Replace multiple spaces with a single space
|
145 |
+
df = df.withColumn(column_name, regexp_replace(col(column_name), "\\s+", " "))
|
146 |
+
# Remove special characters except those used in dates and times
|
147 |
+
df = df.withColumn(column_name, regexp_replace(col(column_name), "[^a-zA-Z0-9\\s/:.-]", ""))
|
148 |
return df
|
149 |
|
150 |
+
|
151 |
def clean_column(df, column_name):
|
152 |
print(f"Cleaning column: {column_name}")
|
153 |
start_time = perf_counter()
|
154 |
+
# Get the data type of the current column
|
155 |
+
column_type = df.schema[column_name].dataType
|
156 |
|
157 |
+
if isinstance(column_type, StringType):
|
158 |
typos_df = check_typos(df, column_name)
|
159 |
+
if typos_df is not None and typos_df.count() > 0:
|
160 |
print(f"Detailed typos for column {column_name}:")
|
161 |
+
typos_df.show(truncate=False)
|
162 |
df = transform_string_column(df, column_name)
|
163 |
+
|
164 |
+
elif isinstance(column_type, (DoubleType, IntegerType)):
|
165 |
+
# For numeric columns, we'll do a simple null check
|
166 |
+
df = df.withColumn(column_name, when(col(column_name).isNull(), lit(None)).otherwise(col(column_name)))
|
167 |
|
168 |
end_time = perf_counter()
|
169 |
print(f"Time taken to clean {column_name}: {end_time - start_time:.6f} seconds")
|
170 |
return df
|
171 |
|
172 |
+
# Update the remove_outliers function to work on a single column
|
173 |
def remove_outliers(df, column):
|
174 |
print(f"Removing outliers from column: {column}")
|
175 |
+
|
176 |
+
stats = df.select(column).summary("25%", "75%").collect()
|
177 |
+
q1 = float(stats[0][1])
|
178 |
+
q3 = float(stats[1][1])
|
179 |
iqr = q3 - q1
|
180 |
lower_bound = q1 - 1.5 * iqr
|
181 |
upper_bound = q3 + 1.5 * iqr
|
182 |
+
df = df.filter((col(column) >= lower_bound) & (col(column) <= upper_bound))
|
183 |
+
|
184 |
+
return df
|
185 |
|
186 |
def calculate_nonconforming_cells(df):
|
187 |
+
nonconforming_cells = {}
|
188 |
+
for column in df.columns:
|
189 |
+
nonconforming_count = df.filter(col(column).isNull() | isnan(column)).count()
|
190 |
+
nonconforming_cells[column] = nonconforming_count
|
191 |
+
return nonconforming_cells
|
192 |
|
193 |
def get_numeric_columns(df):
|
194 |
+
return [field.name for field in df.schema.fields if isinstance(field.dataType, (IntegerType, DoubleType))]
|
195 |
|
196 |
def remove_duplicates_from_primary_key(df, primary_key_column):
|
197 |
print(f"Removing duplicates based on primary key column: {primary_key_column}")
|
198 |
+
return df.dropDuplicates([primary_key_column])
|
199 |
|
200 |
+
def clean_data(spark, df, primary_key_column, progress):
|
201 |
start_time = time.time()
|
202 |
process_times = {}
|
203 |
|
204 |
print("Starting data validation and cleaning...")
|
205 |
print_dataframe_info(df, "Initial - ")
|
206 |
|
207 |
+
# Calculate nonconforming cells before cleaning
|
208 |
nonconforming_cells_before = calculate_nonconforming_cells(df)
|
209 |
|
210 |
+
# Step 1: Normalize column headers
|
211 |
progress(0.1, desc="Normalizing column headers")
|
212 |
step_start_time = time.time()
|
213 |
df = check_and_normalize_column_headers(df)
|
214 |
process_times['Normalize headers'] = time.time() - step_start_time
|
215 |
|
216 |
+
# Step 2: Remove empty columns
|
217 |
progress(0.2, desc="Removing empty columns")
|
218 |
step_start_time = time.time()
|
219 |
df = remove_empty_columns(df)
|
220 |
+
print('2) count of valid rows:', df.count())
|
221 |
process_times['Remove empty columns'] = time.time() - step_start_time
|
222 |
|
223 |
+
# Step 3: Remove empty rows
|
224 |
progress(0.3, desc="Removing empty rows")
|
225 |
step_start_time = time.time()
|
226 |
df = remove_empty_rows(df)
|
227 |
+
print('3) count of valid rows:', df.count())
|
228 |
process_times['Remove empty rows'] = time.time() - step_start_time
|
229 |
|
230 |
+
# Step 4: Drop rows with NAs for columns with more than 50% valid data
|
231 |
progress(0.4, desc="Dropping rows with NAs")
|
232 |
step_start_time = time.time()
|
233 |
df = drop_rows_with_nas(df)
|
234 |
+
print('4) count of valid rows:', df.count())
|
235 |
process_times['Drop rows with NAs'] = time.time() - step_start_time
|
236 |
|
237 |
+
# Step 5: Clean columns (including typo checking and string transformation)
|
238 |
column_cleaning_times = {}
|
239 |
total_columns = len(df.columns)
|
240 |
for index, column in enumerate(df.columns):
|
241 |
progress(0.5 + (0.2 * (index / total_columns)), desc=f"Cleaning column: {column}")
|
242 |
column_start_time = time.time()
|
243 |
df = clean_column(df, column)
|
244 |
+
print('5) count of valid rows:', df.count())
|
245 |
column_cleaning_times[f"Clean column: {column}"] = time.time() - column_start_time
|
246 |
process_times.update(column_cleaning_times)
|
247 |
|
248 |
+
# Step 6: Remove outliers from numeric columns (excluding primary key)
|
249 |
progress(0.7, desc="Removing outliers")
|
250 |
step_start_time = time.time()
|
251 |
numeric_columns = get_numeric_columns(df)
|
252 |
numeric_columns = [col for col in numeric_columns if col != primary_key_column]
|
253 |
for column in numeric_columns:
|
254 |
df = remove_outliers(df, column)
|
255 |
+
print('6) count of valid rows:', df.count())
|
256 |
process_times['Remove outliers'] = time.time() - step_start_time
|
257 |
|
258 |
+
# Step 7: Remove duplicates from primary key column
|
259 |
progress(0.8, desc="Removing duplicates from primary key")
|
260 |
step_start_time = time.time()
|
261 |
df = remove_duplicates_from_primary_key(df, primary_key_column)
|
262 |
+
print('7) count of valid rows:', df.count())
|
|
|
263 |
|
264 |
print("Cleaning process completed.")
|
265 |
print_dataframe_info(df, "Final - ")
|
266 |
|
267 |
+
return df, nonconforming_cells_before, process_times
|