production_app / app_generic.py
rchrdgwr's picture
Add .gitignore file
278ff72
import os
from typing import List
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_qdrant import QdrantVectorStore
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import ChatOpenAI
from langchain.storage import LocalFileStore
from chainlit.types import AskFileResponse
from langchain.embeddings import CacheBackedEmbeddings
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client import QdrantClient
import chainlit as cl
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_core.runnables.config import RunnableConfig
from dotenv import load_dotenv
import uuid
load_dotenv()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""
rag_message_list = [
{"role" : "system", "content" : rag_system_prompt_template},
]
rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""
chat_prompt = ChatPromptTemplate.from_messages([
("system", rag_system_prompt_template),
("human", rag_user_prompt_template)
])
chat_model = ChatOpenAI(model="gpt-4o-mini")
def process_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
with open(tempfile.name, "wb") as f:
f.write(file.content)
Loader = PyMuPDFLoader
loader = Loader(tempfile.name)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
# Decorator: This is a Chainlit decorator that marks a function to be executed when a chat session starts
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files == None:
# Async method: This allows the function to pause execution while waiting for the user to upload a file,
# without blocking the entire application. It improves responsiveness and scalability.
files = await cl.AskFileMessage(
content="Please upload a PDF file to begin!",
accept=["application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...",
)
await msg.send()
# load the file
docs = process_file(file)
# Create a Qdrant vector store with cache backed embeddings
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
store = LocalFileStore("./cache/")
# Caching: Using CacheBackedEmbeddings improves performance by storing and reusing
# previously computed embeddings, reducing API calls and processing time.
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings, store, namespace=core_embeddings.model
)
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder)
vectorstore.add_documents(docs)
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
# Create a chain that uses the QDrant vector store
# Parallelization: LCEL runnables are parallelized by default, allowing for efficient
# execution of multiple steps in the chain simultaneously, improving overall performance.
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
| RunnablePassthrough.assign(context=itemgetter("context"))
| chat_prompt | chat_model
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_chain)
# Decorator: This Chainlit decorator is used to rename the authors of messages in the chat interface
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"ChatOpenAI": "the Generator...", "VectorStoreRetriever": "the Retriever..."}
return rename_dict.get(orig_author, orig_author)
# Decorator: This Chainlit decorator marks a function to be executed when a new message is received in the chat
@cl.on_message
async def main(message: cl.Message):
runnable = cl.user_session.get("chain")
msg = cl.Message(content="")
# Async method: Using astream allows for asynchronous streaming of the response,
# improving responsiveness and user experience by showing partial results as they become available.
async for chunk in runnable.astream(
{"question": message.content},
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
):
await msg.stream_token(chunk.content)
await msg.send()