import asyncio import json import re from datetime import datetime from utils_evaluate import evaluate_answers, evaluate_objections from utils_prep import offer_initial_actions async def display_llm_responses(cl, session_state): output = f"**Responses**" await cl.Message(content=output).send() for query, response in zip(session_state.queries, session_state.llm_responses): query_display = { "command": query["command"], "message": query["message"], "mood_score": query["mood_score"], "previous_question": query["previous_question"], "rep_answer": query["rep_answer"], "next_question": query["next_question"], } query_json = json.dumps(query_display, indent=2) await cl.Message(content="Query:").send() await cl.Message(content=query_json).send() await cl.Message(content="Response:").send() await cl.Message(content=response).send() remaining_queries = session_state.queries[len(session_state.llm_responses):] remaining_responses = session_state.llm_responses[len(session_state.queries):] for query in remaining_queries: await cl.Message(content=f"**Query:** {query}").send() for response in remaining_responses: await cl.Message(content=f"**Response:** {response}").send() def format_score(score): if isinstance(score, (int, float)): return f"{score*100:.1f}%" return score def format_rogue_score(score): if isinstance(score, str): match = re.search(r'precision=([\d.]+), recall=([\d.]+), fmeasure=([\d.]+)', score) if match: precision = float(match.group(1)) recall = float(match.group(2)) fmeasure = float(match.group(3)) return f"Precision: {precision*100:.1f}%, Recall: {recall*100:.1f}%, FMeasure: {fmeasure*100:.1f}%" else: precision = score.precision recall = score.recall fmeasure = score.fmeasure return f"Precision: {precision*100:.1f}%, Recall: {recall*100:.1f}%, FMeasure: {fmeasure*100:.1f}%" return score # def format_datetime(dt): if isinstance(dt, datetime): return dt.strftime("%Y-%m-%d %H:%M") return str(dt) # async def display_evaluation_results(cl, session_state): out_text = "*Preparing evaluation results ...*" await cl.Message(content=out_text).send() print("Checking evaluation and objection flags") print(session_state.do_evaluation) print(session_state.add_objections_to_analysis) if session_state.do_evaluation: evaluate_answers(session_state) elif session_state.add_objections_to_analysis: await evaluate_objections(session_state) await asyncio.sleep(1) output = f"**Session Summary**" await cl.Message(content=output).send() output = f"**Start Time:** {format_datetime(session_state.start_time)} \n" output = output + f"**End Time:** {format_datetime(session_state.end_time)} \n" output = output + f"**Duration:** {session_state.duration_minutes} minutes \n" output = output + f"**Total Number of Questions:** {len(session_state.questions)} \n" output = output + f"**Total Questions Answered:** {len(session_state.responses)} \n" await cl.Message(content=output).send() if session_state.do_ragas_evaluation: results_df = session_state.ragas_results.to_pandas() columns_to_average = ['answer_relevancy', 'answer_correctness'] averages = results_df[columns_to_average].mean() await cl.Message(content="**Overall Summary (By SalesBuddy)**").send() output = f"**SalesBuddy Score (1-10):** {session_state.responses[-1]['overall_score']} \n" output = output + f"**SalesBuddy Evaluation:** {session_state.responses[-1]['overall_evaluation']} \n" output = output + f"**SalesBuddy Final Mood Score (1-10):** {session_state.responses[-1]['mood_score']} \n" await cl.Message(content=output).send() if session_state.do_ragas_evaluation: await cl.Message(content="**Average Scores - Based on RAGAS**").send() output = "Answer Relevancy: " + str(format_score(averages['answer_relevancy'])) + "\n" output = output + "Answer Correctness: " + str(format_score(averages['answer_correctness'])) + "\n" await cl.Message(content=output).send() await cl.Message(content="**Individual Question Scores**").send() for index, resp in enumerate(session_state.responses): output = f""" **Question:** {resp.get('question', 'N/A')} **Answer:** {resp.get('response', 'N/A')} **SalesBuddy Evaluation:** {resp.get('response_evaluation', 'N/A')} **Evaluation Score:** {resp.get('evaluation_score', 'N/A')} """ if session_state.do_ragas_evaluation: scores = session_state.scores[index] relevancy = scores.get('answer_relevancy', 'N/A') correctness = scores.get('answer_correctness', 'N/A') bleu_score = scores.get('bleu_score', 'N/A') rouge1_score = scores.get('rouge_score', {}).get('rouge1', 'N/A') rouge1_output = format_rogue_score(rouge1_score) rougeL_score = scores.get('rouge_score', {}).get('rougeL', 'N/A') rougeL_output = format_rogue_score(rougeL_score) semantic_similarity_score = scores.get('semantic_similarity_score', 'N/A') numbers = f""" **Answer Relevancy:** {format_score(relevancy)} **Answer Correctness:** {format_score(correctness)} **BLEU Score:** {format_score(bleu_score)} **ROUGE 1 Score:** {rouge1_output} **ROUGE L Score:** {rougeL_output} **Semantic Similarity Score:** {format_score(semantic_similarity_score)} """ await cl.Message(content=output).send() await cl.Message(content=numbers).send() else: await cl.Message(content=output).send() await offer_initial_actions()