import streamlit as st import cv2 from openvino.runtime import Core ie = Core() devices = ie.available_devices for device in devices: device_name = ie.get_property(device, "FULL_DEVICE_NAME") print(f"{device}: {device_name}") st.write("Device", device) st.write("Device Name", device_name) model = ie.read_model(model="v3-small_224_1.0_float.xml") compiled_model = ie.compile_model(model=model, device_name="CPU") output_layer = compiled_model.output(0) # The MobileNet model expects images in RGB format. image = cv2.cvtColor(cv2.imread(filename="coco.jpg"), code=cv2.COLOR_BGR2RGB) # Resize to MobileNet image shape. input_image = cv2.resize(src=image, dsize=(224, 224)) # Reshape to model input shape. input_image = np.expand_dims(input_image, 0) st.image(image, caption='Input Image') result_infer = compiled_model([input_image])[output_layer] result_index = np.argmax(result_infer) # Convert the inference result to a class name. imagenet_classes = open("imagenet_2012.txt").read().splitlines() # The model description states that for this model, class 0 is a background. # Therefore, a background must be added at the beginning of imagenet_classes. imagenet_classes = ['background'] + imagenet_classes final_result=imagenet_classes[result_index] st.write("Inference Result:", final_result)