import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM # Streamlit App Title st.title("Tamil Text Generation with LLaMA") # Load the model and tokenizer model_name = "abhinand/tamil-llama-7b-base-v0.1" st.sidebar.write("Loading the model... This may take some time.") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) st.sidebar.write("Model loaded successfully!") # Text input from the user input_text = st.text_area("Enter Tamil text:", "வணக்கம், எப்படி இருக்கின்றீர்கள்?") # Generate button if st.button("Generate Text"): with st.spinner("Generating response..."): # Encode the input text inputs = tokenizer(input_text, return_tensors="pt") # Generate response outputs = model.generate(**inputs, max_length=50) # Decode and display the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.text_area("Generated Response:", generated_text, height=200)