Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Streamlit App Title | |
| st.title("Tamil Text Generation with LLaMA") | |
| # Load the model and tokenizer | |
| model_name = "abhinand/tamil-llama-7b-base-v0.1" | |
| st.sidebar.write("Loading the model... This may take some time.") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| st.sidebar.write("Model loaded successfully!") | |
| # Text input from the user | |
| input_text = st.text_area("Enter Tamil text:", "வணக்கம், எப்படி இருக்கின்றீர்கள்?") | |
| # Generate button | |
| if st.button("Generate Text"): | |
| with st.spinner("Generating response..."): | |
| # Encode the input text | |
| inputs = tokenizer(input_text, return_tensors="pt") | |
| # Generate response | |
| outputs = model.generate(**inputs, max_length=50) | |
| # Decode and display the generated text | |
| generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| st.text_area("Generated Response:", generated_text, height=200) | |