Raphaël Bournhonesque commited on
Commit
ef48bcf
·
1 Parent(s): 60077aa

first commit

Browse files
Files changed (2) hide show
  1. main.py +77 -0
  2. requirements.txt +2 -0
main.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import enum
2
+ import os
3
+ from typing import Optional
4
+
5
+ import requests
6
+ import streamlit as st
7
+
8
+
9
+ http_session = requests.Session()
10
+
11
+ @enum.unique
12
+ class NeuralCategoryClassifierModel(enum.Enum):
13
+ keras_2_0 = "keras-2.0"
14
+ keras_sota_3_0 = "keras-sota-3-0"
15
+ keras_ingredient_ocr_3_0 = "keras-ingredient-ocr-3.0"
16
+ keras_baseline_3_0 = "keras-baseline-3.0"
17
+ keras_original_3_0 = "keras-original-3.0"
18
+ keras_product_name_only_3_0 = "keras-product-name-only-3.0"
19
+
20
+
21
+ LOCAL_DB = False
22
+
23
+ if LOCAL_DB:
24
+ ROBOTOFF_BASE_URL = "http://localhost:5500/api/v1"
25
+ else:
26
+ ROBOTOFF_BASE_URL = "https://robotoff.openfoodfacts.org/api/v1"
27
+
28
+ PREDICTION_URL = ROBOTOFF_BASE_URL + "/predict/category"
29
+
30
+
31
+ @st.cache_data()
32
+ def get_predictions(barcode: str, model_name: str, threshold: Optional[float] = None):
33
+ data = {"barcode": barcode, "predictors": ["neural"], "neural_model_name": model_name}
34
+ if threshold is not None:
35
+ data["threshold"] = threshold
36
+
37
+ r = requests.post(PREDICTION_URL, json=data)
38
+ r.raise_for_status()
39
+ return r.json()["neural"]
40
+
41
+ def display_predictions(
42
+ barcode: str,
43
+ model_names: list[str],
44
+ threshold: Optional[float] = None,
45
+ ):
46
+ debug_showed = False
47
+ for model_name in model_names:
48
+ response = get_predictions(barcode, model_name, threshold)
49
+
50
+ if "debug" in response:
51
+ if not debug_showed:
52
+ debug_showed = True
53
+ st.write(response["debug"])
54
+ response.pop("debug")
55
+ st.write(f"** {model_name} **")
56
+ st.write(response)
57
+
58
+
59
+
60
+ st.sidebar.title("Category Prediction Demo")
61
+ barcode = st.sidebar.text_input(
62
+ "Product barcode"
63
+ )
64
+ threshold = st.sidebar.number_input("Threshold", format="%f") or None
65
+ model_names = st.multiselect(
66
+ "Name of the model",
67
+ [x.name for x in NeuralCategoryClassifierModel],
68
+ default=NeuralCategoryClassifierModel.keras_sota_3_0.name,
69
+ )
70
+
71
+ if barcode:
72
+ barcode = barcode.strip()
73
+ display_predictions(
74
+ barcode=barcode,
75
+ threshold=threshold,
76
+ model_names=model_names,
77
+ )
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ requests
2
+ streamlit