Spaces:
Sleeping
Sleeping
Raphaël Bournhonesque
commited on
Commit
·
ef48bcf
1
Parent(s):
60077aa
first commit
Browse files- main.py +77 -0
- requirements.txt +2 -0
main.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
import os
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import requests
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
|
9 |
+
http_session = requests.Session()
|
10 |
+
|
11 |
+
@enum.unique
|
12 |
+
class NeuralCategoryClassifierModel(enum.Enum):
|
13 |
+
keras_2_0 = "keras-2.0"
|
14 |
+
keras_sota_3_0 = "keras-sota-3-0"
|
15 |
+
keras_ingredient_ocr_3_0 = "keras-ingredient-ocr-3.0"
|
16 |
+
keras_baseline_3_0 = "keras-baseline-3.0"
|
17 |
+
keras_original_3_0 = "keras-original-3.0"
|
18 |
+
keras_product_name_only_3_0 = "keras-product-name-only-3.0"
|
19 |
+
|
20 |
+
|
21 |
+
LOCAL_DB = False
|
22 |
+
|
23 |
+
if LOCAL_DB:
|
24 |
+
ROBOTOFF_BASE_URL = "http://localhost:5500/api/v1"
|
25 |
+
else:
|
26 |
+
ROBOTOFF_BASE_URL = "https://robotoff.openfoodfacts.org/api/v1"
|
27 |
+
|
28 |
+
PREDICTION_URL = ROBOTOFF_BASE_URL + "/predict/category"
|
29 |
+
|
30 |
+
|
31 |
+
@st.cache_data()
|
32 |
+
def get_predictions(barcode: str, model_name: str, threshold: Optional[float] = None):
|
33 |
+
data = {"barcode": barcode, "predictors": ["neural"], "neural_model_name": model_name}
|
34 |
+
if threshold is not None:
|
35 |
+
data["threshold"] = threshold
|
36 |
+
|
37 |
+
r = requests.post(PREDICTION_URL, json=data)
|
38 |
+
r.raise_for_status()
|
39 |
+
return r.json()["neural"]
|
40 |
+
|
41 |
+
def display_predictions(
|
42 |
+
barcode: str,
|
43 |
+
model_names: list[str],
|
44 |
+
threshold: Optional[float] = None,
|
45 |
+
):
|
46 |
+
debug_showed = False
|
47 |
+
for model_name in model_names:
|
48 |
+
response = get_predictions(barcode, model_name, threshold)
|
49 |
+
|
50 |
+
if "debug" in response:
|
51 |
+
if not debug_showed:
|
52 |
+
debug_showed = True
|
53 |
+
st.write(response["debug"])
|
54 |
+
response.pop("debug")
|
55 |
+
st.write(f"** {model_name} **")
|
56 |
+
st.write(response)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
st.sidebar.title("Category Prediction Demo")
|
61 |
+
barcode = st.sidebar.text_input(
|
62 |
+
"Product barcode"
|
63 |
+
)
|
64 |
+
threshold = st.sidebar.number_input("Threshold", format="%f") or None
|
65 |
+
model_names = st.multiselect(
|
66 |
+
"Name of the model",
|
67 |
+
[x.name for x in NeuralCategoryClassifierModel],
|
68 |
+
default=NeuralCategoryClassifierModel.keras_sota_3_0.name,
|
69 |
+
)
|
70 |
+
|
71 |
+
if barcode:
|
72 |
+
barcode = barcode.strip()
|
73 |
+
display_predictions(
|
74 |
+
barcode=barcode,
|
75 |
+
threshold=threshold,
|
76 |
+
model_names=model_names,
|
77 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
streamlit
|