|
|
import gradio as gr |
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
import torch |
|
|
|
|
|
|
|
|
model_name = "VietAI/envit5-translation" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
|
|
def translate(text, source_lang): |
|
|
"""Translate text based on the source language.""" |
|
|
input_text = f"{source_lang}: {text}" |
|
|
inputs = tokenizer(input_text, return_tensors="pt", padding=True).input_ids.to('cpu') |
|
|
outputs = model.generate(inputs, max_length=512) |
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=translate, |
|
|
inputs=[gr.Textbox(label="Input Text"), gr.Radio(["vi", "en"], label="Source Language")], |
|
|
outputs=gr.Textbox(label="Translated Text"), |
|
|
title="VietAI Translation", |
|
|
description="Translate between Vietnamese and English using envit5-translation model." |
|
|
) |
|
|
|
|
|
|
|
|
demo.launch() |
|
|
|