# import streamlit as st # from transformers import pipeline # pipe = pipeline('sentiment-analysis') # text= st.text_area('enter some text') # if st.button('Submit'): # if text: # out = pipe(text) # st.write(out) import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Load the GPT tokenizer and model tokenizer = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2") model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2") # Load the sentiment analysis pipeline sentiment_pipeline = pipeline("sentiment-analysis") # Text input field user_input = st.text_area("Enter your prompt:") if st.button("Submit"): if user_input: # Generate text using the GPT model inputs = tokenizer(user_input, return_tensors="pt") generated_ids = model.generate(**inputs) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Perform sentiment analysis on both original and generated text original_sentiment = sentiment_pipeline(user_input) generated_sentiment = sentiment_pipeline(generated_text) # Display the results st.write("Original Text:") st.write(user_input) st.write("Original Text Sentiment:", original_sentiment) st.write("Generated Text:") st.write(generated_text) st.write("Generated Text Sentiment:", generated_sentiment)