import os import openai import PyPDF2 import gradio as gr import docx class CourseGenarator: def __init__(self): openai.api_key = os.getenv("OPENAI_API_KEY") def extract_text_from_file(self,file_path): # Get the file extension file_extension = os.path.splitext(file_path)[1] if file_extension == '.pdf': with open(file_path, 'rb') as file: # Create a PDF file reader object reader = PyPDF2.PdfFileReader(file) # Create an empty string to hold the extracted text extracted_text = "" # Loop through each page in the PDF and extract the text for page_number in range(reader.getNumPages()): page = reader.getPage(page_number) extracted_text += page.extractText() return extracted_text elif file_extension == '.txt': with open(file_path, 'r') as file: # Just read the entire contents of the text file return file.read() elif file_extension == '.docx': doc = docx.Document(file_path) text = [] for paragraph in doc.paragraphs: text.append(paragraph.text) return '\n'.join(text) else: return "Unsupported file type" def response(self,resume_path): resume_path = resume_path.name resume = self.extract_text_from_file(resume_path) # Define the prompt or input for the model prompt = f"""Analyze the resume to generate online courses with website links to improve skills following resume delimitted by triple backticks. Generate atmost five courses. result format should be: course:[course]. website link:[website link] ```{resume}``` """ # Generate a response from the GPT-3 model response = openai.Completion.create( engine='text-davinci-003', prompt=prompt, max_tokens=200, temperature=0, n=1, stop=None, ) # Extract the generated text from the API response generated_text = response.choices[0].text.strip() return generated_text def gradio_interface(self): with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as app: gr.HTML("""Image Image""") with gr.Row(elem_id="col-container"): with gr.Column(): gr.HTML("
") gr.HTML( """

Courses finder based on Resume

""" ) gr.HTML("
") with gr.Column(): resume = gr.File(label="Resume",elem_classes="heightfit") with gr.Column(): analyse = gr.Button("Find Courses") with gr.Column(): result = gr.Textbox(label="Suggested Cources",lines=8) analyse.click(self.response, [resume], result) print(result) app.launch() ques = CourseGenarator() ques.gradio_interface()