from base_model import BaseModel import networks class TestModel(BaseModel): """ This TesteModel can be used to generate CycleGAN results for only one direction. This model will automatically set '--dataset_mode single', which only loads the images from one collection. See the test instruction for more details. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. The model can only be used during test time. It requires '--dataset_mode single'. You need to specify the network using the option '--model_suffix'. """ assert not is_train, 'TestModel cannot be used during training time' parser.set_defaults(dataset_mode='single') parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ assert(not opt.isTrain) BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call self.loss_names = [] # specify the images you want to save/display. The training/test scripts will call self.visual_names = ['real', 'fake'] # specify the models you want to save to the disk. The training/test scripts will call and self.model_names = ['G' + opt.model_suffix] # only generator is needed. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) # assigns the model to self.netG_[suffix] so that it can be loaded # please see setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. We need to use 'single_dataset' dataset mode. It only load images from one domain. """ self.real = input['A'].to(self.device) self.image_paths = input['A_paths'] def forward(self): """Run forward pass.""" self.fake = self.netG(self.real) # G(real) def optimize_parameters(self): """No optimization for test model.""" pass