"""Model class template This module provides a template for users to implement custom models. You can specify '--model template' to use this model. The class name should be consistent with both the filename and its model option. The filename should be _dataset.py The class name should be Dataset.py It implements a simple image-to-image translation baseline based on regression loss. Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss: min_ ||netG(data_A) - data_B||_1 You need to implement the following functions: : Add model-specific options and rewrite default values for existing options. <__init__>: Initialize this model class. : Unpack input data and perform data pre-processing. : Run forward pass. This will be called by both and . : Update network weights; it will be called in every training iteration. """ import torch from base_model import BaseModel import networks class TemplateModel(BaseModel): @staticmethod def modify_commandline_options(parser, is_train=True): """Add new model-specific options and rewrite default values for existing options. Parameters: parser -- the option parser is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset. if is_train: parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model. return parser def __init__(self, opt): """Initialize this model class. Parameters: opt -- training/test options A few things can be done here. - (required) call the initialization function of BaseModel - define loss function, visualization images, model names, and optimizers """ BaseModel.__init__(self, opt) # call the initialization method of BaseModel # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. self.loss_names = ['loss_G'] # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images. self.visual_names = ['data_A', 'data_B', 'output'] # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks. # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them. self.model_names = ['G'] # define networks; you can use opt.isTrain to specify different behaviors for training and test. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids) if self.isTrain: # only defined during training time # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss. # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device) self.criterionLoss = torch.nn.L1Loss() # define and initialize optimizers. You can define one optimizer for each network. # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers = [self.optimizer] # Our program will automatically call to define schedulers, load networks, and print networks def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. """ AtoB = self.opt.direction == 'AtoB' # use to swap data_A and data_B self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths def forward(self): """Run forward pass. This will be called by both functions and .""" self.output = self.netG(self.data_A) # generate output image given the input data_A def backward(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" # caculate the intermediate results if necessary; here self.output has been computed during function # calculate loss given the input and intermediate results self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G def optimize_parameters(self): """Update network weights; it will be called in every training iteration.""" self.forward() # first call forward to calculate intermediate results self.optimizer.zero_grad() # clear network G's existing gradients self.backward() # calculate gradients for network G self.optimizer.step() # update gradients for network G