from pix2pix_model import Pix2PixModel import torch from skimage import color # used for lab2rgb import numpy as np class ColorizationModel(Pix2PixModel): """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images). The model training requires '-dataset_model colorization' dataset. It trains a pix2pix model, mapping from L channel to ab channels in Lab color space. By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. By default, we use 'colorization' dataset for this model. See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper) """ Pix2PixModel.modify_commandline_options(parser, is_train) parser.set_defaults(dataset_mode='colorization') return parser def __init__(self, opt): """Initialize the class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions For visualization, we set 'visual_names' as 'real_A' (input real image), 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image) We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'. we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'. """ # reuse the pix2pix model Pix2PixModel.__init__(self, opt) # specify the images to be visualized. self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb'] def lab2rgb(self, L, AB): """Convert an Lab tensor image to a RGB numpy output Parameters: L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array) AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array) Returns: rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array) """ AB2 = AB * 110.0 L2 = (L + 1.0) * 50.0 Lab = torch.cat([L2, AB2], dim=1) Lab = Lab[0].data.cpu().float().numpy() Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0)) rgb = color.lab2rgb(Lab) * 255 return rgb def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B) self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B)