Spaces:
Sleeping
Sleeping
rajsecrets0
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load class indices
|
8 |
+
with open("class_indices.json", "r") as f:
|
9 |
+
class_indices = json.load(f)
|
10 |
+
|
11 |
+
# Reverse the mapping for predictions
|
12 |
+
class_names = {v: k for k, v in class_indices.items()}
|
13 |
+
|
14 |
+
# Load the TFLite model
|
15 |
+
interpreter = tf.lite.Interpreter(model_path="model.tflite")
|
16 |
+
interpreter.allocate_tensors()
|
17 |
+
|
18 |
+
# Get input and output details
|
19 |
+
input_details = interpreter.get_input_details()
|
20 |
+
output_details = interpreter.get_output_details()
|
21 |
+
|
22 |
+
# Define the image preprocessing function
|
23 |
+
def preprocess_image(image, target_size=(224, 224)):
|
24 |
+
image = image.resize(target_size)
|
25 |
+
image = np.array(image) / 255.0 # Normalize the image
|
26 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
27 |
+
return image.astype(np.float32)
|
28 |
+
|
29 |
+
# Define prediction function
|
30 |
+
def predict(image):
|
31 |
+
input_data = preprocess_image(image)
|
32 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
33 |
+
interpreter.invoke()
|
34 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
35 |
+
predicted_class = np.argmax(output_data)
|
36 |
+
confidence = np.max(output_data)
|
37 |
+
return class_names[predicted_class], confidence
|
38 |
+
|
39 |
+
# Streamlit UI
|
40 |
+
st.title("🌾 Crop Disease Prediction")
|
41 |
+
st.write("Upload an image of a crop leaf, and the app will predict the disease (if any).")
|
42 |
+
|
43 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "png", "jpeg"])
|
44 |
+
|
45 |
+
if uploaded_file is not None:
|
46 |
+
# Display the uploaded image
|
47 |
+
image = Image.open(uploaded_file)
|
48 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
49 |
+
|
50 |
+
st.write("Processing...")
|
51 |
+
|
52 |
+
# Perform prediction
|
53 |
+
predicted_class, confidence = predict(image)
|
54 |
+
st.write(f"**Prediction:** {predicted_class}")
|
55 |
+
st.write(f"**Confidence:** {confidence:.2f}")
|