rajsecrets0's picture
Create app.py
eb87013 verified
raw
history blame
1.6 kB
import streamlit as st
import joblib
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Load the trained KNN model
knn_classifier = joblib.load('knn_model.pkl')
# Load the TF-IDF vectorizer
tfidf_vectorizer = joblib.load('tfidf_vectorizer.pkl')
# Download nltk resources
nltk.download('punkt')
nltk.download('stopwords')
# Text Preprocessing Function
stop_words = set(stopwords.words('english'))
def preprocess_text(text):
words = word_tokenize(text.lower())
words = [word for word in words if word.isalpha() and word not in stop_words]
return ' '.join(words)
# Inference function
def predict_disease(symptom):
preprocessed_symptom = preprocess_text(symptom)
symptom_tfidf = tfidf_vectorizer.transform([preprocessed_symptom])
predicted_disease = knn_classifier.predict(symptom_tfidf)
return predicted_disease[0]
# Streamlit UI
st.title("Disease Classification using Symptoms")
st.markdown("Enter your symptoms to predict the disease.")
# Input box for symptoms
symptom = st.text_input("Enter symptoms:", "")
# Predict button
if st.button("Predict Disease"):
if symptom:
predicted_disease = predict_disease(symptom)
st.success(f"Predicted Disease: {predicted_disease}")
else:
st.warning("Please enter symptoms.")
# Add some styling
st.markdown(
"""
<style>
.main .block-container {
max-width: 600px;
padding-top: 2rem;
padding-right: 2rem;
padding-left: 2rem;
padding-bottom: 2rem;
}
</style>
""",
unsafe_allow_html=True
)