rajat5ranjan commited on
Commit
515f567
·
verified ·
1 Parent(s): 53fff5e

all changes

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py CHANGED
@@ -9,9 +9,46 @@ from langchain.schema import StrOutputParser
9
  from langchain.schema.prompt_template import format_document
10
  from langchain.schema.runnable import RunnablePassthrough
11
  from langchain.vectorstores import Chroma
 
 
 
12
 
 
 
 
13
 
14
 
15
  loader = WebBaseLoader("https://blog.google/technology/ai/google-gemini-ai/")
16
  docs = loader.load()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
 
 
 
 
9
  from langchain.schema.prompt_template import format_document
10
  from langchain.schema.runnable import RunnablePassthrough
11
  from langchain.vectorstores import Chroma
12
+ import google.generativeai as genai
13
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
14
+ from langchain_google_genai import ChatGoogleGenerativeAI
15
 
16
+ GOOGLE_API_KEY=os.environ['GOOGLE_API_KEY']
17
+
18
+ genai.configure(api_key=GOOGLE_API_KEY)
19
 
20
 
21
  loader = WebBaseLoader("https://blog.google/technology/ai/google-gemini-ai/")
22
  docs = loader.load()
23
+ st.write(len(docs))
24
+
25
+
26
+ model = genai.GenerativeModel('gemini-pro')
27
+
28
+ prompt = st.text_input("Enter Prompt","What is the meaning of life?")
29
+ response = model.generate_content(prompt)
30
+
31
+ st.write(response.text)
32
+ # If there is no environment variable set for the API key, you can pass the API
33
+ # key to the parameter `google_api_key` of the `ChatGoogleGenerativeAI` function:
34
+ # `google_api_key="key"`.
35
+ # llm = ChatGoogleGenerativeAI(model="gemini-pro",
36
+ # temperature=0.7, top_p=0.85)
37
+
38
+
39
+ # If there is no environment variable set for the API key, you can pass the API
40
+ # key to the parameter `google_api_key` of the `GoogleGenerativeAIEmbeddings`
41
+ # function: `google_api_key = "key"`.
42
+
43
+ # gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
44
+
45
+ # # Save to disk
46
+ # vectorstore = Chroma.from_documents(
47
+ # documents=docs, # Data
48
+ # embedding=gemini_embeddings, # Embedding model
49
+ # persist_directory="./chroma_db" # Directory to save data
50
+ # )
51
 
52
+ # vectorstore_disk = Chroma(
53
+ # persist_directory="./chroma_db", # Directory of db
54
+ # embedding_function=gemini_embeddings # Embedding model