Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import torch | |
model = GPT2LMHeadModel.from_pretrained('raihanp/medical-chatbot') | |
tokenizer = GPT2Tokenizer.from_pretrained('openai-community/gpt2-medium') | |
def chat_with_bot(prompt): | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Tokenize the input | |
inputs = tokenizer(f"[INST] {prompt} \n[/INST]", return_tensors="pt", padding=True) | |
length = 18 + len(prompt) | |
# Generate a response | |
with torch.no_grad(): | |
outputs = model.generate(inputs['input_ids'], attention_mask=inputs['attention_mask'],max_new_tokens=50, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id) | |
# Decode and return the response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response[length:] | |
iface = gr.Interface(fn=chat_with_bot, inputs="text", outputs="text") | |
iface.launch() |