raihanp's picture
Create app.py
98fe69e verified
raw
history blame
590 Bytes
from PIL import Image
import torch
import gradio as gr
inference = torch.load('fine_tune_resnet.pth')
inference.eval()
def classifier(image):
output = inference(test_transform(Image.open('/content/1000-ml-plastic-water-bottle-500x500.webp')).unsqueeze(0))
_, prediction = torch.max(output,1)
confidence = round(torch.softmax(output,1).max().item(),4)*100
return f'{label_dict[prediction.item()]} (Confidence: {confidence}%)'
iface = gr.Interface(fc=classifier,
inputs=gr.Image(type="pil"),
outputs='text')
iface.launch(share=True)