import os import spaces from typing import Optional import gradio as gr import numpy as np import pandas as pd import torch from PIL import Image from pipeline_interpolated_sd import InterpolationStableDiffusionPipeline from pipeline_interpolated_sdxl import InterpolationStableDiffusionXLPipeline from prior import BetaPriorPipeline os.environ["TOKENIZERS_PARALLELISM"] = "false" title = r"""

PAID: (Prompt-guided) Attention Interpolation of Text-to-Image Diffusion

""" description = r""" Official 🤗 Gradio demo for PAID: (Prompt-guided) Attention Interpolation of Text-to-Image Diffusion.
We strongly recommend to deploy this demo locally with GPU resources for better experience, especially for XL-series since the GPU resources is limited in this space.
How to use:
1. Input prompt 1, prompt 2 and negative prompt. 2. For Compositional Generation Input the guidance prompt and choose the one you are satisfied! 3. For Image morphing Input the image prompt 1 and image prompt 2, and choose IP-Adapter. 4. For Scale Control Input the same text for prompt 1 and prompt 2, leave image prompt 1 blank and upload image prompt 2. Then choose IP-Adapter or IP-Composition-Adapter. 5. Note that the time required for the SD-series with an exploration size of 10 is around 120 seconds. XL-series with an exploration size 5 is around 5 minutes 30 seconds. 6. Click the Generate button to begin generating images. 7. Enjoy! 😊""" article = r""" --- ✒️ **Citation**
If you found this demo/our paper useful, please consider citing: ```bibtex @article{he2024aid, title={AID: Attention Interpolation of Text-to-Image Diffusion}, author={He, Qiyuan and Wang, Jinghao and Liu, Ziwei and Yao, Angela}, journal={arXiv preprint arXiv:2403.17924}, year={2024} } ``` 📧 **Contact**
If you have any questions, please feel free to open an issue in our Github Repo or directly reach us out at qhe@u.nus.edu.sg. """ MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = False USE_TORCH_COMPILE = False ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" PREVIEW_IMAGES = False device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipeline = InterpolationStableDiffusionPipeline.from_pretrained( "SG161222/Realistic_Vision_V4.0_noVAE", torch_dtype=torch.float16 ) pipeline.to(device, dtype=torch.float16) def change_model_fn(model_name: str) -> None: global device name_mapping = { "AOM3": "hogiahien/aom3", "SD1.5-512": "stable-diffusion-v1-5/stable-diffusion-v1-5", "SD2.1-768": "stabilityai/stable-diffusion-2-1", "RealVis-v4.0": "SG161222/Realistic_Vision_V4.0_noVAE", "SDXL-1024": "stabilityai/stable-diffusion-xl-base-1.0", "Playground-XL-v2": "playgroundai/playground-v2.5-1024px-aesthetic", "Juggernaut-XL-v9": "RunDiffusion/Juggernaut-XL-v9" } if device == torch.device("cpu"): dtype = torch.float16 else: dtype = torch.float16 if "XL" not in model_name: globals()["pipeline"] = InterpolationStableDiffusionPipeline.from_pretrained( name_mapping[model_name], torch_dtype=dtype ) globals()["pipeline"].to(device, dtype=torch.float16) else: globals()["pipeline"] = InterpolationStableDiffusionXLPipeline.from_pretrained( name_mapping[model_name], torch_dtype=dtype ) globals()["pipeline"].to(device) def change_adapter_fn(adapter_name: str) -> None: global pipeline if adapter_name == "IP-Adapter": if isinstance(pipeline, InterpolationStableDiffusionPipeline): pipeline.load_aid_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") else: pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", "", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors") elif adapter_name == "IP-Composition-Adapter": if isinstance(pipeline, InterpolationStableDiffusionPipeline): pipeline.load_aid_ip_adapter("ostris/ip-composition-adapter", subfolder="", weight_name="ip_plus_composition_sd15.safetensors") else: pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", subfolder="", weight_name="ip_plus_composition_sdxl.safetensors") else: pipeline.load_aid() def save_image(img, index): unique_name = f"{index}.png" img = Image.fromarray(img) img.save(unique_name) return unique_name def get_example() -> list[list[str | float | int ]]: case = [ [ "A statue", "A dragon", "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", "", None, None, 50, 10, 5, 5.0, 0.5, "RealVis-v4.0", "None", 0, True, ], [ "A photo of a statue", "Het meisje met de parel, by Vermeer", "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", "", Image.open("asset/statue.jpg"), Image.open("asset/vermeer.jpg"), 50, 10, 5, 5.0, 0.5, "RealVis-v4.0", "IP-Adapter", 0, True, ], [ "A boy is smiling", "A boy is smiling", "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", "", None, Image.open("asset/vermeer.jpg"), 50, 10, 5, 5.0, 0.5, "RealVis-v4.0", "IP-Composition-Adapter", 0, True, ], [ "masterpiece, best quality, very aesthetic, absurdres, A dog", "masterpiece, best quality, very aesthetic, absurdres, A car", "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", "masterpiece, best quality, very aesthetic, absurdres, the toy, named 'Dog-Car', is designed as a dog figure with car wheels instead of feet", None, None, 50, 5, 5, 5.0, 0.5, "RealVis-v4.0", "None", 1002, True ], [ "masterpiece, best quality, very aesthetic, absurdres, A dog", "masterpiece, best quality, very aesthetic, absurdres, A car", "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", "masterpiece, best quality, very aesthetic, absurdres, a dog is driving a car", None, None, 28, 5, 5, 5.0, 0.5, "Playground-XL-v2", "None", 1002, True ] # [ # "masterpiece, best quality, very aesthetic, absurdres, A cat is smiling, face portrait", # "masterpiece, best quality, very aesthetic, absurdres, A beautiful lady, face portrait", # "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", # None, # None, # None, # 28, # 7, # 5, # 5.0, # 1.0, # "Playground-XL-v2" # ], # [ # "masterpiece, best quality, very aesthetic, absurdres, A dog", # "masterpiece, best quality, very aesthetic, absurdres, A car", # "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", # "masterpiece, best quality, very aesthetic, absurdres, the toy, named 'Dog-Car', is designed as a dog figure with car wheels instead of feet", # None, # None, # 28, # 5, # 5, # 5.0, # 0.5, # "Playground-XL-v2" # ], ] return case def change_generate_button_fn(enable: int) -> gr.Button: if enable == 0: return gr.Button(interactive=False, value="Switching Model...") else: return gr.Button(interactive=True, value="Generate") def dynamic_gallery_fn(interpolation_size: int): return gr.Gallery( label="Result", show_label=False, rows=1, columns=interpolation_size ) @spaces.GPU(duration=110) @torch.no_grad() def generate( prompt1, prompt2, negative_prompt, guide_prompt=None, image_prompt1=None, image_prompt2=None, num_inference_steps=28, exploration_size=16, interpolation_size=7, guidance_scale=5.0, warmup_ratio=0.5, seed=0, same_latent=True, ) -> np.ndarray: global pipeline global adapter_choice beta_pipe = BetaPriorPipeline(pipeline) if guide_prompt == "": guide_prompt = None generator = ( torch.cuda.manual_seed(seed) if torch.cuda.is_available() else torch.manual_seed(seed) ) size = pipeline.unet.config.sample_size latent1 = torch.randn((1, 4, size, size,), device="cuda", dtype=pipeline.unet.dtype, generator=generator) if same_latent: latent2 = latent1.clone() else: latent2 = torch.randn((1, 4, size, size,), device="cuda", dtype=pipeline.unet.dtype, generator=generator) if image_prompt1 is None and image_prompt2 is None: pipeline.load_aid() elif (image_prompt1 is None and image_prompt2 is not None): if adapter_choice.value == "IP-Adapter": if isinstance(pipeline, InterpolationStableDiffusionPipeline): pipeline.load_aid_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") else: pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", "", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors") elif adapter_choice.value == "IP-Composition-Adapter": if isinstance(pipeline, InterpolationStableDiffusionPipeline): pipeline.load_aid_ip_adapter("ostris/ip-composition-adapter", subfolder="", weight_name="ip_plus_composition_sd15.safetensors") else: pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", subfolder="", weight_name="ip_plus_composition_sdxl.safetensors") elif (image_prompt1 is None and image_prompt2 is not None): if adapter_choice.value == "IP-Adapter": if isinstance(pipeline, InterpolationStableDiffusionPipeline): pipeline.load_aid_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin", early="scale_control") else: pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", "", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors", early="scale_control") elif adapter_choice.value == "IP-Composition-Adapter": if isinstance(pipeline, InterpolationStableDiffusionPipeline): pipeline.load_aid_ip_adapter("ostris/ip-composition-adapter", subfolder="", weight_name="ip_plus_composition_sd15.safetensors", early="scale_control") else: pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", subfolder="", weight_name="ip_plus_composition_sdxl.safetensors", early="scale_control") else: raise ValueError("To use scale control, please provide only the right image; To use image morphing, please provide images from both side.") images = beta_pipe.generate_interpolation( gr.Progress(), prompt1, prompt2, negative_prompt, latent1, latent2, num_inference_steps, image_start=image_prompt1, image_end=image_prompt2, exploration_size=exploration_size, interpolation_size=interpolation_size, output_type="np", guide_prompt=guide_prompt, guidance_scale=guidance_scale, warmup_ratio=warmup_ratio ) return images interpolation_size = None with gr.Blocks(css="style.css") as demo: gr.Markdown(title) gr.Markdown(description) with gr.Group(): with gr.Column(): with gr.Row(): prompt1 = gr.Text( label="Prompt 1", max_lines=3, placeholder="Enter the First Prompt", interactive=True, value="A statue", ) prompt2 = gr.Text( label="Prompt 2", max_lines=3, placeholder="Enter the Second Prompt", interactive=True, value="A dragon", ) negative_prompt = gr.Text( label="Negative prompt", max_lines=3, placeholder="Enter a Negative Prompt", interactive=True, value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", ) guidance_prompt = gr.Text( label="Guidance prompt (Optional)", max_lines=3, placeholder="Enter a Guidance Prompt", interactive=True, value="", ) model_choice = gr.Dropdown( ["RealVis-v4.0", "SD1.4-512", "SD1.5-512", "SD2.1-768", "AOM3", "SDXL-1024", "Playground-XL-v2", "Juggernaut-XL-v9"], label="Model", value="RealVis-v4.0", interactive=True, info="All series are running on float16; SD2.1 does not support IP-Adapter; XL-Series takes longer time", ) with gr.Group(): with gr.Row(): image_prompt1 = gr.Image(label="Image Prompt 1 (Optional)", interactive=True) image_prompt2 = gr.Image(label="Image Prompt 2 (Optional)", interactive=True) adapter_choice = gr.Dropdown( ["None", "IP-Adapter", "IP-Composition-Adapter"], label="IP-Adapter", value="None", interactive=True, info="Only set to IP-Adapter or IP-Composition-Adapter when using image prompt", ) with gr.Group(): result = gr.Gallery(label="Result", show_label=False, rows=1, columns=3) generate_button = gr.Button(value="Generate", variant="primary") with gr.Accordion("Advanced options", open=True): with gr.Group(): with gr.Row(): with gr.Column(): interpolation_size = gr.Slider( label="Interpolation Size", minimum=3, maximum=5, step=1, value=3, info="Interpolation size includes the start and end images", ) exploration_size = gr.Slider( label="Exploration Size", minimum=5, maximum=10, step=1, value=5, info="Exploration size has to be larger than interpolation size", ) with gr.Row(): with gr.Column(): warmup_ratio = gr.Slider( label="Warmup Ratio", minimum=0.02, maximum=1, step=0.01, value=0.5, interactive=True, ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=5.0, interactive=True, ) num_inference_steps = gr.Slider( label="Inference Steps", minimum=25, maximum=50, step=1, value=50, interactive=True, ) with gr.Column(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) same_latent = gr.Checkbox( label="Same latent", value=False, info="Use the same latent for start and end images", show_label=True, ) gr.Examples( examples=get_example(), inputs=[ prompt1, prompt2, negative_prompt, guidance_prompt, image_prompt1, image_prompt2, num_inference_steps, exploration_size, interpolation_size, guidance_scale, warmup_ratio, model_choice, adapter_choice, seed, same_latent, ], cache_examples=CACHE_EXAMPLES, ) model_choice.change( fn=change_generate_button_fn, inputs=gr.Number(0, visible=False), outputs=generate_button, ).then(fn=change_model_fn, inputs=model_choice).then( fn=change_generate_button_fn, inputs=gr.Number(1, visible=False), outputs=generate_button, ) adapter_choice.change( fn=change_generate_button_fn, inputs=gr.Number(0, visible=False), outputs=generate_button, ).then(fn=change_adapter_fn, inputs=[adapter_choice]).then( fn=change_generate_button_fn, inputs=gr.Number(1, visible=False), outputs=generate_button, ) inputs = [ prompt1, prompt2, negative_prompt, guidance_prompt, image_prompt1, image_prompt2, num_inference_steps, exploration_size, interpolation_size, guidance_scale, warmup_ratio, seed, same_latent, ] generate_button.click( fn=dynamic_gallery_fn, inputs=interpolation_size, outputs=result, ).then( fn=generate, inputs=inputs, outputs=result, ) gr.Markdown(article) demo.launch()