import os from tqdm import tqdm from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings # from langchain_google_genai import GoogleGenerativeAIEmbeddings # Import từ helpers from helpers import ( list_docx_files, # Lấy danh sách file .docx get_splits, # Xử lý file docx thành splits get_json_splits_only, # Xử lý file JSON (FAQ) get_web_documents, # Xử lý dữ liệu từ web ) import json def get_vectorstore(): ### Xử lý tất cả các tài liệu và nhét vào database folder_path = "syllabus_nct_word_format/" docx_files = list_docx_files(folder_path) all_splits = [] # Khởi tạo danh sách lưu kết quả print("Feeding relevent websites' contents") # base_urls =['https://fda.neu.edu.vn/hoi-nghi-khoa-hoc-cong-nghe-dai-hoc-kinh-te-quoc-dan-nam-2025/'] # ['https://nct.neu.edu.vn/', 'https://fsf.neu.edu.vn/', 'https://mfe.neu.edu.vn/', 'https://mis.neu.edu.vn/', 'https://fda.neu.edu.vn/', 'https://khoathongke.neu.edu.vn/', 'https://fit.neu.edu.vn/'] website_contents = get_web_documents(base_urls=base_urls) all_splits += website_contents print('Feeding .docx files') for i, file_path in enumerate(tqdm(docx_files, desc="Đang xử lý", unit="file")): output_json_path = f"output_{i}.json" splits = get_splits(file_path, output_json_path) all_splits += splits print('Feeding .json files') # Xử lý FAQ FAQ_path = "syllabus_nct_word_format/FAQ.json" FAQ_splits = get_json_splits_only(FAQ_path) all_splits += FAQ_splits FAQ_path = "syllabus_nct_word_format/FAQ2.json" FAQ_splits = get_json_splits_only(FAQ_path) all_splits += FAQ_splits # Lưu vào vectorstore với nhúng từ Google GenAI # embedding = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004") print('Get embedding model /paraphrase-multilingual-MiniLM-L12-v2') embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") print('Set vectorstore FAISS') vectorstore = FAISS.from_documents(documents=all_splits, embedding=embedding) return vectorstore