Spaces:
Sleeping
Sleeping
Create helpers.py
Browse files- helpers.py +255 -0
helpers.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from docx import Document
|
2 |
+
import json
|
3 |
+
import datetime
|
4 |
+
import tempfile
|
5 |
+
from pathlib import Path
|
6 |
+
from unidecode import unidecode
|
7 |
+
from langchain.document_loaders import JSONLoader, UnstructuredWordDocumentLoader, WebBaseLoader
|
8 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
|
11 |
+
import google.generativeai as genai
|
12 |
+
from tqdm import tqdm
|
13 |
+
from pathlib import Path
|
14 |
+
import shutil
|
15 |
+
import requests
|
16 |
+
from bs4 import BeautifulSoup
|
17 |
+
|
18 |
+
async def get_urls_splits(url='https://nct.neu.edu.vn/', char='https://nct.neu.edu.vn/'):
|
19 |
+
reqs = requests.get(url)
|
20 |
+
soup = BeautifulSoup(reqs.text, 'html.parser')
|
21 |
+
|
22 |
+
urls = []
|
23 |
+
for link in soup.find_all('a', href=True): # Chỉ lấy thẻ có 'href'
|
24 |
+
href = link.get('href')
|
25 |
+
if href.startswith(char):
|
26 |
+
urls.append(href)
|
27 |
+
return urls
|
28 |
+
# docs = []
|
29 |
+
# for page_url in url:
|
30 |
+
# loader = WebBaseLoader(web_paths=[page_url])
|
31 |
+
# async for doc in loader.alazy_load():
|
32 |
+
# docs.append(doc)
|
33 |
+
|
34 |
+
# assert len(docs) == 1
|
35 |
+
# # doc = docs[0]
|
36 |
+
|
37 |
+
# return docs
|
38 |
+
|
39 |
+
# Ví dụ sử dụng
|
40 |
+
# nct_urls = get_nct_urls('https://nct.neu.edu.vn/')
|
41 |
+
# print(nct_urls)
|
42 |
+
|
43 |
+
def log_message(messages, filename="chat_log.txt"):
|
44 |
+
"""Ghi lịch sử tin nhắn vào file log"""
|
45 |
+
with open(filename, "a", encoding="utf-8") as f:
|
46 |
+
log_entry = {
|
47 |
+
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
48 |
+
"conversation": messages
|
49 |
+
}
|
50 |
+
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
|
51 |
+
|
52 |
+
def remove_tables_from_docx(file_path):
|
53 |
+
"""Tạo bản sao của file DOCX nhưng loại bỏ tất cả bảng bên trong."""
|
54 |
+
doc = Document(file_path)
|
55 |
+
new_doc = Document()
|
56 |
+
|
57 |
+
for para in doc.paragraphs:
|
58 |
+
new_doc.add_paragraph(para.text)
|
59 |
+
|
60 |
+
# 📌 Lưu vào file tạm, đảm bảo đóng đúng cách
|
61 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as temp_file:
|
62 |
+
temp_path = temp_file.name
|
63 |
+
new_doc.save(temp_path)
|
64 |
+
|
65 |
+
return temp_path # ✅ Trả về đường dẫn file mới, không làm hỏng file gốc
|
66 |
+
|
67 |
+
def load_text_data(file_path):
|
68 |
+
"""Tải nội dung văn bản từ file DOCX (đã loại bảng)."""
|
69 |
+
cleaned_file = remove_tables_from_docx(file_path)
|
70 |
+
return UnstructuredWordDocumentLoader(cleaned_file).load()
|
71 |
+
|
72 |
+
|
73 |
+
def extract_tables_from_docx(file_path):
|
74 |
+
doc = Document(file_path)
|
75 |
+
tables = []
|
76 |
+
all_paragraphs = [p.text.strip() for p in doc.paragraphs if p.text.strip()] # Lấy tất cả đoạn văn bản không rỗng
|
77 |
+
|
78 |
+
table_index = 0
|
79 |
+
para_index = 0
|
80 |
+
table_positions = []
|
81 |
+
|
82 |
+
# Xác định vị trí của bảng trong tài liệu
|
83 |
+
for element in doc.element.body:
|
84 |
+
if element.tag.endswith("tbl"):
|
85 |
+
table_positions.append((table_index, para_index))
|
86 |
+
table_index += 1
|
87 |
+
elif element.tag.endswith("p"):
|
88 |
+
para_index += 1
|
89 |
+
|
90 |
+
for idx, (table_idx, para_idx) in enumerate(table_positions):
|
91 |
+
data = []
|
92 |
+
for row in doc.tables[table_idx].rows:
|
93 |
+
data.append([cell.text.strip() for cell in row.cells])
|
94 |
+
|
95 |
+
if len(data) > 1: # Chỉ lấy bảng có dữ liệu
|
96 |
+
# Lấy 5 dòng trước và sau bảng
|
97 |
+
related_start = max(0, para_idx - 5)
|
98 |
+
related_end = min(len(all_paragraphs), para_idx + 5)
|
99 |
+
related_text = all_paragraphs[related_start:related_end]
|
100 |
+
tables.append({"table": idx + 1, "content": data, "related": related_text})
|
101 |
+
return tables
|
102 |
+
|
103 |
+
def convert_to_json(tables):
|
104 |
+
structured_data = {}
|
105 |
+
|
106 |
+
for table in tables:
|
107 |
+
headers = [unidecode(h) for h in table["content"][0]] # Bỏ dấu ở headers
|
108 |
+
rows = [[unidecode(cell) for cell in row] for row in table["content"][1:]] # Bỏ dấu ở dữ liệu
|
109 |
+
json_table = [dict(zip(headers, row)) for row in rows if len(row) == len(headers)]
|
110 |
+
|
111 |
+
related_text = [unidecode(text) for text in table["related"]] # Bỏ dấu ở văn bản liên quan
|
112 |
+
|
113 |
+
structured_data[table["table"]] = {
|
114 |
+
"content": json_table,
|
115 |
+
"related": related_text
|
116 |
+
}
|
117 |
+
|
118 |
+
return json.dumps(structured_data, indent=4, ensure_ascii=False)
|
119 |
+
|
120 |
+
|
121 |
+
def save_json_to_file(json_data, output_path):
|
122 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
123 |
+
json.dump(json.loads(json_data), f, ensure_ascii=False, indent=4)
|
124 |
+
|
125 |
+
# def load_json_with_langchain(json_path):
|
126 |
+
# loader = JSONLoader(file_path=json_path, jq_schema='.. | .content?', text_content=False)
|
127 |
+
# data = loader.load()
|
128 |
+
|
129 |
+
# # # Kiểm tra xem dữ liệu có bị lỗi không
|
130 |
+
# # print("Sample Data:", data[:2]) # In thử 2 dòng đầu
|
131 |
+
# return data
|
132 |
+
|
133 |
+
def load_json_manually(json_path):
|
134 |
+
with open(json_path, 'r', encoding='utf-8') as f:
|
135 |
+
data = json.load(f)
|
136 |
+
return data
|
137 |
+
|
138 |
+
def load_table_data(filepath, output_json_path):
|
139 |
+
tables = extract_tables_from_docx(file_path)
|
140 |
+
json_output = convert_to_json(tables)
|
141 |
+
save_json_to_file(json_output, output_json_path)
|
142 |
+
|
143 |
+
table_data = load_json_manually(output_json_path)
|
144 |
+
return table_data
|
145 |
+
|
146 |
+
def get_splits(file_path, output_json_path):
|
147 |
+
table_data = load_table_data(file_path, output_json_path)
|
148 |
+
text_data = load_text_data(file_path)
|
149 |
+
|
150 |
+
# Chia nhỏ văn bản
|
151 |
+
json_splitter = RecursiveJsonSplitter(max_chunk_size = 1000)
|
152 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250)
|
153 |
+
|
154 |
+
table_splits = json_splitter.create_documents(texts=[table_data])
|
155 |
+
text_splits = text_splitter.split_documents(text_data)
|
156 |
+
all_splits = table_splits + text_splits
|
157 |
+
return all_splits
|
158 |
+
|
159 |
+
def get_json_splits_only(file_path):
|
160 |
+
table_data = load_json_manually(file_path)
|
161 |
+
|
162 |
+
def remove_accents(obj): #xoa dau tieng viet
|
163 |
+
if isinstance(obj, str):
|
164 |
+
return unidecode(obj)
|
165 |
+
elif isinstance(obj, list):
|
166 |
+
return [remove_accents(item) for item in obj]
|
167 |
+
elif isinstance(obj, dict):
|
168 |
+
return {remove_accents(k): remove_accents(v) for k, v in obj.items()}
|
169 |
+
return obj
|
170 |
+
|
171 |
+
cleaned_data = remove_accents(table_data)
|
172 |
+
wrapped_data = {"data": cleaned_data} if isinstance(cleaned_data, list) else cleaned_data
|
173 |
+
|
174 |
+
json_splitter = RecursiveJsonSplitter(max_chunk_size = 512)
|
175 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250)
|
176 |
+
|
177 |
+
table_splits = json_splitter.create_documents(texts=[wrapped_data])
|
178 |
+
table_splits = text_splitter.split_documents(table_splits)
|
179 |
+
|
180 |
+
return table_splits
|
181 |
+
|
182 |
+
def list_docx_files(folder_path):
|
183 |
+
return [str(file) for file in Path(folder_path).rglob("*.docx")]
|
184 |
+
|
185 |
+
def prompt_order(queries):
|
186 |
+
text = 'IMPORTANT: Here is the questions of user in order, use that and the context above to know the best answer:\n'
|
187 |
+
i = 0
|
188 |
+
for q in queries:
|
189 |
+
i += 1
|
190 |
+
text += f'Question {i}: {str(q)}\n'
|
191 |
+
return text
|
192 |
+
|
193 |
+
# Define the augment_prompt function
|
194 |
+
def augment_prompt(query: str, k: int = 10):
|
195 |
+
queries = []
|
196 |
+
queries.append(query)
|
197 |
+
|
198 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": k})
|
199 |
+
results = retriever.invoke(query)
|
200 |
+
|
201 |
+
if results:
|
202 |
+
source_knowledge = "\n\n".join([doc.page_content for doc in results])
|
203 |
+
return f"""Using the contexts below, answer the query.
|
204 |
+
|
205 |
+
Contexts:
|
206 |
+
{source_knowledge}
|
207 |
+
|
208 |
+
"""
|
209 |
+
else:
|
210 |
+
return f"No relevant context found.\n."
|
211 |
+
|
212 |
+
def get_answer(query, queries_list=None):
|
213 |
+
if queries_list is None:
|
214 |
+
queries_list = []
|
215 |
+
|
216 |
+
messages = [
|
217 |
+
{"role": "user", "parts": [{"text": "IMPORTANT: You are a super energetic, helpful, polite, Vietnamese-speaking assistant. If you can not see the answer in contexts, try to search it up online by yourself but remember to give the source."}]},
|
218 |
+
{"role": "user", "parts": [{"text": augment_prompt(query)}]}
|
219 |
+
]
|
220 |
+
# bonus = '''
|
221 |
+
# Bạn tham kháo thêm các nguồn thông tin tại:
|
222 |
+
# Trang thông tin điện tử: https://neu.edu.vn ; https://daotao.neu.edu.vn
|
223 |
+
# Trang mạng xã hội có thông tin tuyển sinh: https://www.facebook.com/ktqdNEU ; https://www.facebook.com/tvtsneu ;
|
224 |
+
# Email tuyển sinh: [email protected]
|
225 |
+
# Số điện thoại tuyển sinh: 0888.128.558
|
226 |
+
# '''
|
227 |
+
|
228 |
+
queries_list.append(query)
|
229 |
+
queries = {"role": "user", "parts": [{"text": prompt_order(queries_list)}]}
|
230 |
+
messages_with_queries = messages.copy()
|
231 |
+
messages_with_queries.append(queries)
|
232 |
+
# messages_with_queries.insert(0, queries)
|
233 |
+
|
234 |
+
# Configure API key
|
235 |
+
genai.configure(api_key=key)
|
236 |
+
|
237 |
+
# Initialize the Gemini model
|
238 |
+
model = genai.GenerativeModel("gemini-2.0-flash")
|
239 |
+
|
240 |
+
response = model.generate_content(contents=messages_with_queries, stream=True)
|
241 |
+
response_text = ""
|
242 |
+
|
243 |
+
for chunk in response:
|
244 |
+
response_text += chunk.text
|
245 |
+
yield response_text
|
246 |
+
|
247 |
+
messages.append({"role": "model", "parts": [{"text": response_text}]})
|
248 |
+
|
249 |
+
# user_feedback = yield "\nNhập phản hồi của bạn (hoặc nhập 'q' để thoát): "
|
250 |
+
# if user_feedback.lower() == "q":
|
251 |
+
# break
|
252 |
+
|
253 |
+
# messages.append({"role": "user", "parts": [{"text": query}]})
|
254 |
+
|
255 |
+
log_message(messages)
|