chatbot4nct_test1 / helpers.py
quoc-khanh's picture
Update helpers.py
2d1a321 verified
raw
history blame
9.27 kB
from docx import Document
import json
import datetime
import tempfile
from pathlib import Path
from unidecode import unidecode
from langchain_community.document_loaders import JSONLoader, UnstructuredWordDocumentLoader, WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter
from langchain_community.vectorstores import FAISS
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
import google.generativeai as genai
from tqdm import tqdm
from pathlib import Path
import shutil
import requests
from bs4 import BeautifulSoup
async def get_urls_splits(url='https://nct.neu.edu.vn/', char='https://nct.neu.edu.vn/'):
reqs = requests.get(url)
soup = BeautifulSoup(reqs.text, 'html.parser')
urls = []
for link in soup.find_all('a', href=True): # Chỉ lấy thẻ có 'href'
href = link.get('href')
if href.startswith(char):
urls.append(href)
return urls
# docs = []
# for page_url in url:
# loader = WebBaseLoader(web_paths=[page_url])
# async for doc in loader.alazy_load():
# docs.append(doc)
# assert len(docs) == 1
# # doc = docs[0]
# return docs
# Ví dụ sử dụng
# nct_urls = get_nct_urls('https://nct.neu.edu.vn/')
# print(nct_urls)
def log_message(messages, filename="chat_log.txt"):
"""Ghi lịch sử tin nhắn vào file log"""
with open(filename, "a", encoding="utf-8") as f:
log_entry = {
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"conversation": messages
}
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
def remove_tables_from_docx(file_path):
"""Tạo bản sao của file DOCX nhưng loại bỏ tất cả bảng bên trong."""
doc = Document(file_path)
new_doc = Document()
for para in doc.paragraphs:
new_doc.add_paragraph(para.text)
# 📌 Lưu vào file tạm, đảm bảo đóng đúng cách
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as temp_file:
temp_path = temp_file.name
new_doc.save(temp_path)
return temp_path # ✅ Trả về đường dẫn file mới, không làm hỏng file gốc
def load_text_data(file_path):
"""Tải nội dung văn bản từ file DOCX (đã loại bảng)."""
cleaned_file = remove_tables_from_docx(file_path)
return UnstructuredWordDocumentLoader(cleaned_file).load()
def extract_tables_from_docx(file_path):
doc = Document(file_path)
tables = []
all_paragraphs = [p.text.strip() for p in doc.paragraphs if p.text.strip()] # Lấy tất cả đoạn văn bản không rỗng
table_index = 0
para_index = 0
table_positions = []
# Xác định vị trí của bảng trong tài liệu
for element in doc.element.body:
if element.tag.endswith("tbl"):
table_positions.append((table_index, para_index))
table_index += 1
elif element.tag.endswith("p"):
para_index += 1
for idx, (table_idx, para_idx) in enumerate(table_positions):
data = []
for row in doc.tables[table_idx].rows:
data.append([cell.text.strip() for cell in row.cells])
if len(data) > 1: # Chỉ lấy bảng có dữ liệu
# Lấy 5 dòng trước và sau bảng
related_start = max(0, para_idx - 5)
related_end = min(len(all_paragraphs), para_idx + 5)
related_text = all_paragraphs[related_start:related_end]
tables.append({"table": idx + 1, "content": data, "related": related_text})
return tables
def convert_to_json(tables):
structured_data = {}
for table in tables:
headers = [unidecode(h) for h in table["content"][0]] # Bỏ dấu ở headers
rows = [[unidecode(cell) for cell in row] for row in table["content"][1:]] # Bỏ dấu ở dữ liệu
json_table = [dict(zip(headers, row)) for row in rows if len(row) == len(headers)]
related_text = [unidecode(text) for text in table["related"]] # Bỏ dấu ở văn bản liên quan
structured_data[table["table"]] = {
"content": json_table,
"related": related_text
}
return json.dumps(structured_data, indent=4, ensure_ascii=False)
def save_json_to_file(json_data, output_path):
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(json.loads(json_data), f, ensure_ascii=False, indent=4)
# def load_json_with_langchain(json_path):
# loader = JSONLoader(file_path=json_path, jq_schema='.. | .content?', text_content=False)
# data = loader.load()
# # # Kiểm tra xem dữ liệu có bị lỗi không
# # print("Sample Data:", data[:2]) # In thử 2 dòng đầu
# return data
def load_json_manually(json_path):
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def load_table_data(file_path, output_json_path):
tables = extract_tables_from_docx(file_path)
json_output = convert_to_json(tables)
save_json_to_file(json_output, output_json_path)
table_data = load_json_manually(output_json_path)
return table_data
def get_splits(file_path, output_json_path):
table_data = load_table_data(file_path, output_json_path)
text_data = load_text_data(file_path)
# Chia nhỏ văn bản
json_splitter = RecursiveJsonSplitter(max_chunk_size = 1000)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250)
table_splits = json_splitter.create_documents(texts=[table_data])
text_splits = text_splitter.split_documents(text_data)
all_splits = table_splits + text_splits
return all_splits
def get_json_splits_only(file_path):
table_data = load_json_manually(file_path)
def remove_accents(obj): #xoa dau tieng viet
if isinstance(obj, str):
return unidecode(obj)
elif isinstance(obj, list):
return [remove_accents(item) for item in obj]
elif isinstance(obj, dict):
return {remove_accents(k): remove_accents(v) for k, v in obj.items()}
return obj
cleaned_data = remove_accents(table_data)
wrapped_data = {"data": cleaned_data} if isinstance(cleaned_data, list) else cleaned_data
json_splitter = RecursiveJsonSplitter(max_chunk_size = 512)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250)
table_splits = json_splitter.create_documents(texts=[wrapped_data])
table_splits = text_splitter.split_documents(table_splits)
return table_splits
def list_docx_files(folder_path):
return [str(file) for file in Path(folder_path).rglob("*.docx")]
def prompt_order(queries):
text = 'IMPORTANT: Here is the questions of user in order, use that and the context above to know the best answer:\n'
i = 0
for q in queries:
i += 1
text += f'Question {i}: {str(q)}\n'
return text
# Define the augment_prompt function
def augment_prompt(query: str, k: int = 10):
queries = []
queries.append(query)
retriever = vectorstore.as_retriever(search_kwargs={"k": k})
results = retriever.invoke(query)
if results:
source_knowledge = "\n\n".join([doc.page_content for doc in results])
return f"""Using the contexts below, answer the query.
Contexts:
{source_knowledge}
"""
else:
return f"No relevant context found.\n."
def get_answer(query, queries_list=None):
if queries_list is None:
queries_list = []
messages = [
{"role": "user", "parts": [{"text": "IMPORTANT: You are a super energetic, helpful, polite, Vietnamese-speaking assistant. If you can not see the answer in contexts, try to search it up online by yourself but remember to give the source."}]},
{"role": "user", "parts": [{"text": augment_prompt(query)}]}
]
# bonus = '''
# Bạn tham kháo thêm các nguồn thông tin tại:
# Trang thông tin điện tử: https://neu.edu.vn ; https://daotao.neu.edu.vn
# Trang mạng xã hội có thông tin tuyển sinh: https://www.facebook.com/ktqdNEU ; https://www.facebook.com/tvtsneu ;
# Email tuyển sinh: [email protected]
# Số điện thoại tuyển sinh: 0888.128.558
# '''
queries_list.append(query)
queries = {"role": "user", "parts": [{"text": prompt_order(queries_list)}]}
messages_with_queries = messages.copy()
messages_with_queries.append(queries)
# messages_with_queries.insert(0, queries)
# Configure API key
genai.configure(api_key=key)
# Initialize the Gemini model
model = genai.GenerativeModel("gemini-2.0-flash")
response = model.generate_content(contents=messages_with_queries, stream=True)
response_text = ""
for chunk in response:
response_text += chunk.text
yield response_text
messages.append({"role": "model", "parts": [{"text": response_text}]})
# user_feedback = yield "\nNhập phản hồi của bạn (hoặc nhập 'q' để thoát): "
# if user_feedback.lower() == "q":
# break
# messages.append({"role": "user", "parts": [{"text": query}]})
log_message(messages)