Spaces:
Sleeping
Sleeping
from docx import Document | |
import json | |
import datetime | |
import tempfile | |
from pathlib import Path | |
from unidecode import unidecode | |
from langchain_community.document_loaders import JSONLoader, UnstructuredWordDocumentLoader, WebBaseLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from tqdm import tqdm | |
from pathlib import Path | |
import shutil | |
import requests | |
from bs4 import BeautifulSoup | |
async def get_urls_splits(url='https://nct.neu.edu.vn/', char='https://nct.neu.edu.vn/'): | |
reqs = requests.get(url) | |
soup = BeautifulSoup(reqs.text, 'html.parser') | |
urls = [] | |
for link in soup.find_all('a', href=True): # Chỉ lấy thẻ có 'href' | |
href = link.get('href') | |
if href.startswith(char): | |
urls.append(href) | |
return urls | |
# docs = [] | |
# for page_url in url: | |
# loader = WebBaseLoader(web_paths=[page_url]) | |
# async for doc in loader.alazy_load(): | |
# docs.append(doc) | |
# assert len(docs) == 1 | |
# # doc = docs[0] | |
# return docs | |
# Ví dụ sử dụng | |
# nct_urls = get_nct_urls('https://nct.neu.edu.vn/') | |
# print(nct_urls) | |
def log_message(messages, filename="chat_log.txt"): | |
"""Ghi lịch sử tin nhắn vào file log""" | |
with open(filename, "a", encoding="utf-8") as f: | |
log_entry = { | |
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"conversation": messages | |
} | |
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n") | |
def remove_tables_from_docx(file_path): | |
"""Tạo bản sao của file DOCX nhưng loại bỏ tất cả bảng bên trong.""" | |
doc = Document(file_path) | |
new_doc = Document() | |
for para in doc.paragraphs: | |
new_doc.add_paragraph(para.text) | |
# 📌 Lưu vào file tạm, đảm bảo đóng đúng cách | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as temp_file: | |
temp_path = temp_file.name | |
new_doc.save(temp_path) | |
return temp_path # ✅ Trả về đường dẫn file mới, không làm hỏng file gốc | |
def load_text_data(file_path): | |
"""Tải nội dung văn bản từ file DOCX (đã loại bảng).""" | |
cleaned_file = remove_tables_from_docx(file_path) | |
return UnstructuredWordDocumentLoader(cleaned_file).load() | |
def extract_tables_from_docx(file_path): | |
doc = Document(file_path) | |
tables = [] | |
all_paragraphs = [p.text.strip() for p in doc.paragraphs if p.text.strip()] # Lấy tất cả đoạn văn bản không rỗng | |
table_index = 0 | |
para_index = 0 | |
table_positions = [] | |
# Xác định vị trí của bảng trong tài liệu | |
for element in doc.element.body: | |
if element.tag.endswith("tbl"): | |
table_positions.append((table_index, para_index)) | |
table_index += 1 | |
elif element.tag.endswith("p"): | |
para_index += 1 | |
for idx, (table_idx, para_idx) in enumerate(table_positions): | |
data = [] | |
for row in doc.tables[table_idx].rows: | |
data.append([cell.text.strip() for cell in row.cells]) | |
if len(data) > 1: # Chỉ lấy bảng có dữ liệu | |
# Lấy 5 dòng trước và sau bảng | |
related_start = max(0, para_idx - 5) | |
related_end = min(len(all_paragraphs), para_idx + 5) | |
related_text = all_paragraphs[related_start:related_end] | |
tables.append({"table": idx + 1, "content": data, "related": related_text}) | |
return tables | |
def convert_to_json(tables): | |
structured_data = {} | |
for table in tables: | |
headers = [unidecode(h) for h in table["content"][0]] # Bỏ dấu ở headers | |
rows = [[unidecode(cell) for cell in row] for row in table["content"][1:]] # Bỏ dấu ở dữ liệu | |
json_table = [dict(zip(headers, row)) for row in rows if len(row) == len(headers)] | |
related_text = [unidecode(text) for text in table["related"]] # Bỏ dấu ở văn bản liên quan | |
structured_data[table["table"]] = { | |
"content": json_table, | |
"related": related_text | |
} | |
return json.dumps(structured_data, indent=4, ensure_ascii=False) | |
def save_json_to_file(json_data, output_path): | |
with open(output_path, 'w', encoding='utf-8') as f: | |
json.dump(json.loads(json_data), f, ensure_ascii=False, indent=4) | |
# def load_json_with_langchain(json_path): | |
# loader = JSONLoader(file_path=json_path, jq_schema='.. | .content?', text_content=False) | |
# data = loader.load() | |
# # # Kiểm tra xem dữ liệu có bị lỗi không | |
# # print("Sample Data:", data[:2]) # In thử 2 dòng đầu | |
# return data | |
def load_json_manually(json_path): | |
with open(json_path, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
return data | |
def load_table_data(file_path, output_json_path): | |
tables = extract_tables_from_docx(file_path) | |
json_output = convert_to_json(tables) | |
save_json_to_file(json_output, output_json_path) | |
table_data = load_json_manually(output_json_path) | |
return table_data | |
def get_splits(file_path, output_json_path): | |
table_data = load_table_data(file_path, output_json_path) | |
text_data = load_text_data(file_path) | |
# Chia nhỏ văn bản | |
json_splitter = RecursiveJsonSplitter(max_chunk_size = 1000) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250) | |
table_splits = json_splitter.create_documents(texts=[table_data]) | |
text_splits = text_splitter.split_documents(text_data) | |
all_splits = table_splits + text_splits | |
return all_splits | |
def get_json_splits_only(file_path): | |
table_data = load_json_manually(file_path) | |
def remove_accents(obj): #xoa dau tieng viet | |
if isinstance(obj, str): | |
return unidecode(obj) | |
elif isinstance(obj, list): | |
return [remove_accents(item) for item in obj] | |
elif isinstance(obj, dict): | |
return {remove_accents(k): remove_accents(v) for k, v in obj.items()} | |
return obj | |
cleaned_data = remove_accents(table_data) | |
wrapped_data = {"data": cleaned_data} if isinstance(cleaned_data, list) else cleaned_data | |
json_splitter = RecursiveJsonSplitter(max_chunk_size = 512) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250) | |
table_splits = json_splitter.create_documents(texts=[wrapped_data]) | |
table_splits = text_splitter.split_documents(table_splits) | |
return table_splits | |
def list_docx_files(folder_path): | |
return [str(file) for file in Path(folder_path).rglob("*.docx")] | |
def prompt_order(queries): | |
text = 'IMPORTANT: Here is the questions of user in order, use that and the context above to know the best answer:\n' | |
i = 0 | |
for q in queries: | |
i += 1 | |
text += f'Question {i}: {str(q)}\n' | |
return text | |
# Define the augment_prompt function | |
def augment_prompt(query: str, k: int = 10): | |
queries = [] | |
queries.append(query) | |
retriever = vectorstore.as_retriever(search_kwargs={"k": k}) | |
results = retriever.invoke(query) | |
if results: | |
source_knowledge = "\n\n".join([doc.page_content for doc in results]) | |
return f"""Using the contexts below, answer the query. | |
Contexts: | |
{source_knowledge} | |
""" | |
else: | |
return f"No relevant context found.\n." | |
def get_answer(query, queries_list=None): | |
if queries_list is None: | |
queries_list = [] | |
messages = [ | |
{"role": "user", "parts": [{"text": "IMPORTANT: You are a super energetic, helpful, polite, Vietnamese-speaking assistant. If you can not see the answer in contexts, try to search it up online by yourself but remember to give the source."}]}, | |
{"role": "user", "parts": [{"text": augment_prompt(query)}]} | |
] | |
# bonus = ''' | |
# Bạn tham kháo thêm các nguồn thông tin tại: | |
# Trang thông tin điện tử: https://neu.edu.vn ; https://daotao.neu.edu.vn | |
# Trang mạng xã hội có thông tin tuyển sinh: https://www.facebook.com/ktqdNEU ; https://www.facebook.com/tvtsneu ; | |
# Email tuyển sinh: [email protected] | |
# Số điện thoại tuyển sinh: 0888.128.558 | |
# ''' | |
queries_list.append(query) | |
queries = {"role": "user", "parts": [{"text": prompt_order(queries_list)}]} | |
messages_with_queries = messages.copy() | |
messages_with_queries.append(queries) | |
# messages_with_queries.insert(0, queries) | |
# Configure API key | |
genai.configure(api_key=key) | |
# Initialize the Gemini model | |
model = genai.GenerativeModel("gemini-2.0-flash") | |
response = model.generate_content(contents=messages_with_queries, stream=True) | |
response_text = "" | |
for chunk in response: | |
response_text += chunk.text | |
yield response_text | |
messages.append({"role": "model", "parts": [{"text": response_text}]}) | |
# user_feedback = yield "\nNhập phản hồi của bạn (hoặc nhập 'q' để thoát): " | |
# if user_feedback.lower() == "q": | |
# break | |
# messages.append({"role": "user", "parts": [{"text": query}]}) | |
log_message(messages) |