hong_seungbum
add application file
c7f5de3
raw
history blame
1.27 kB
from typing import List
import gradio as gr
from PIL import Image
from models import load_transformers
from libs.model_list import model_list
def multiple_image_captioning(input_img: Image.Image, question:str) -> List:
results = []
for model_name, pretrained_paths in model_list.items():
for pretrained_path in pretrained_paths:
try:
process = load_transformers(name=model_name, model_pretrain=pretrained_path)
if question == '':
text = process.image_captioning(input_img)
else:
text = process.visual_question_answering(input_img)
except Exception as e:
text = str(e)
results.append(text)
return results
question_text_Box = gr.Textbox(label="Question")
outputs = []
for model_name, pretrained_paths in model_list.items():
for pretrained_path in pretrained_paths:
outputs.append(gr.Textbox(label=model_name, info=pretrained_path))
demo = gr.Interface(fn=multiple_image_captioning,
inputs=[gr.Image(type='pil'), question_text_Box],
outputs=outputs,
)
demo.launch()