import json import os import traceback from datetime import datetime, timedelta, timezone from typing import Optional import gradio as gr import yaml from src.display.formatting import styled_error, styled_message from src.envs import API, DAILY_SUBMISSION_LIMIT_PER_USER, EVAL_REQUESTS_PATH, QUEUE_REPO from src.submission.structs import CompetitionType, Submission, SubmissionStatus from workflows.structs import Workflow def get_user_submissions_today(username: str, competition_type: str) -> list[Submission]: today = datetime.now(timezone.utc).strftime("%Y%m%d") if username is None: raise gr.Error("Authentication required. Please log in to view your submissions.") out_dir = f"{EVAL_REQUESTS_PATH}/{username}" submissions = [] if not os.path.exists(out_dir): return submissions for file in os.listdir(out_dir): if not file.startswith(f"{competition_type}_"): continue with open(os.path.join(out_dir, file), "r") as f: submission = Submission.from_dict(json.load(f)) if submission.created_at.startswith(today): submissions.append(submission) return submissions def get_time_until_next_submission(tz: timezone = timezone.utc) -> str: next_day_00 = datetime.now(tz) + timedelta(days=1) next_day_00 = next_day_00.replace(hour=0, minute=0, second=0, microsecond=0) remaining_time = next_day_00 - datetime.now(tz) hours = remaining_time.seconds // 3600 minutes = (remaining_time.seconds % 3600) // 60 remaining_time_str = f"{hours} hours {minutes} mins" return remaining_time_str def create_submission( username: str, model_name: str, description: str, workflow: Workflow, competition_type: CompetitionType, ) -> Submission: """ Create a submission for a tossup model. Args: name: Display name of the submission description: Detailed description of what the submission does user_email: Email of the user who created the submission workflow: The workflow configuration for the tossup model Returns: Submission object if successful, None if validation fails """ # Create the submission dt = datetime.now(timezone.utc) submission = Submission( id=f"{competition_type}_{dt.strftime('%Y%m%d_%H%M%S')}_{model_name.lower().replace(' ', '_')}", model_name=model_name, username=username, description=description, competition_type=competition_type, submission_type="simple_workflow", workflow=workflow, status="submitted", created_at=dt.isoformat(), updated_at=dt.isoformat(), ) return submission def submit_model( model_name: str, description: str, workflow: Workflow, competition_type: CompetitionType, profile: gr.OAuthProfile | None, ) -> str: """ Submit a tossup model for evaluation. Args: name: Display name of the submission description: Detailed description of what the submission does user_email: Email of the user who created the submission workflow: The workflow configuration for the tossup model Returns: Status message """ if profile is None: return styled_error("Authentication required. Please log in first to submit your model.") username = profile.username if len(get_user_submissions_today(username)) >= DAILY_SUBMISSION_LIMIT_PER_USER: time_str = get_time_until_next_submission() return styled_error( f"Daily submission limit of {DAILY_SUBMISSION_LIMIT_PER_USER} reached. Please try again in \n {time_str}." ) try: submission = create_submission( username=username, model_name=model_name, description=description, workflow=workflow, competition_type=competition_type, ) # Convert to dictionary format submission_dict = submission.to_dict() # Create output directory path out_dir = f"{EVAL_REQUESTS_PATH}/{username}" out_path = f"{out_dir}/{submission.id}.json" # Upload to HuggingFace dataset API.upload_file( path_or_fileobj=json.dumps(submission_dict, indent=2).encode(), path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add tossup submission {submission.id}", ) return styled_message( f"Successfully submitted tossup model!\n" f"Submission ID: {submission.id}\n" f"Name: {username}/{model_name}\n" f"Please wait for up to an hour for the model to show in the PENDING list." ) except Exception as e: traceback.print_exc() return styled_error(f"Error submitting model: {str(e)}") if __name__ == "__main__": # Example usage from workflows.factory import create_quizbowl_simple_step_initial_setup # Create workflow model_step = create_quizbowl_simple_step_initial_setup() model_step.model = "gpt-4" model_step.provider = "openai" model_step.temperature = 0.7 workflow = Workflow( inputs=["question_text"], outputs={"answer": "A.answer", "confidence": "A.confidence"}, steps={"A": model_step}, ) # Submit model result = submit_model( model_name="GPT-4 Tossup", description="A simple GPT-4 model for tossup questions", workflow=workflow, competition_type="tossup", ) print(result)