import json import os import pandas as pd from display.formatting import make_clickable_model from display.utils_old import EvalQueueColumn def get_leaderboard_df(results_path: str) -> pd.DataFrame: model_result_filepaths = [] for root, _, files in os.walk(results_path): if len(files) == 0 or not all(f.endswith(".json") for f in files): continue for file in files: model_result_filepaths.append(os.path.join(root, file)) eval_results = {"model": [], "buzz_accuracy": [], "win_rate_human": [], "win_rate_model": []} for model_result_filepath in model_result_filepaths: with open(model_result_filepath, "r") as fin: model_result = json.load(fin) model_id = model_result["model_id"] buzz_accuracy = model_result["buzz_accuracy"] win_rate_human = model_result["win_rate_human"] win_rate_model = model_result["win_rate_model"] eval_results["model"].append(model_id) eval_results["buzz_accuracy"].append(buzz_accuracy) eval_results["win_rate_human"].append(win_rate_human) eval_results["win_rate_model"].append(win_rate_model) return pd.DataFrame(eval_results) def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: # TODO: This function is stale, but might be a good reference point for new implementation """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [ e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") ] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]