|
|
|
import json |
|
import os |
|
from typing import Optional |
|
|
|
import cohere |
|
import json_repair |
|
import numpy as np |
|
from anthropic import Anthropic |
|
from langchain_anthropic import ChatAnthropic |
|
from langchain_cohere import ChatCohere |
|
from langchain_openai import ChatOpenAI |
|
from openai import OpenAI |
|
from pydantic import BaseModel, Field |
|
from rich import print as rprint |
|
|
|
import utils |
|
from app_configs import AVAILABLE_MODELS |
|
|
|
|
|
class LLMOutput(BaseModel): |
|
content: str = Field(description="The content of the response") |
|
logprob: Optional[float] = Field(None, description="The log probability of the response") |
|
|
|
|
|
def completion(model: str, system: str, prompt: str, response_format, logprobs: bool = False) -> str: |
|
""" |
|
Generate a completion from an LLM provider with structured output. |
|
|
|
Args: |
|
model (str): Provider and model name in format "provider/model" (e.g. "OpenAI/gpt-4") |
|
system (str): System prompt/instructions for the model |
|
prompt (str): User prompt/input |
|
response_format: Pydantic model defining the expected response structure |
|
logprobs (bool, optional): Whether to return log probabilities. Defaults to False. |
|
Note: Not supported by Anthropic models. |
|
|
|
Returns: |
|
dict: Contains: |
|
- output: The structured response matching response_format |
|
- logprob: (optional) Sum of log probabilities if logprobs=True |
|
- prob: (optional) Exponential of logprob if logprobs=True |
|
|
|
Raises: |
|
ValueError: If logprobs=True with Anthropic models |
|
""" |
|
if model not in AVAILABLE_MODELS: |
|
raise ValueError(f"Model {model} not supported") |
|
model_name = AVAILABLE_MODELS[model]["model"] |
|
provider = model.split("/")[0] |
|
if provider == "Cohere": |
|
return _cohere_completion(model_name, system, prompt, response_format, logprobs) |
|
elif provider == "OpenAI": |
|
return _openai_completion(model_name, system, prompt, response_format, logprobs) |
|
elif provider == "Anthropic": |
|
if logprobs: |
|
raise ValueError("Anthropic does not support logprobs") |
|
return _anthropic_completion(model_name, system, prompt, response_format) |
|
else: |
|
raise ValueError(f"Provider {provider} not supported") |
|
|
|
|
|
def _cohere_completion(model: str, system: str, prompt: str, response_model, logprobs: bool = True) -> str: |
|
messages = [ |
|
{"role": "system", "content": system}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
client = cohere.ClientV2(api_key=os.getenv("COHERE_API_KEY")) |
|
response = client.chat( |
|
model=model, |
|
messages=messages, |
|
response_format={"type": "json_schema", "json_schema": response_model.model_json_schema()}, |
|
logprobs=logprobs, |
|
) |
|
output = {} |
|
output["content"] = response.message.content[0].text |
|
output["output"] = response_model.model_validate_json(response.message.content[0].text).model_dump() |
|
if logprobs: |
|
output["logprob"] = sum(lp.logprobs[0] for lp in response.logprobs) |
|
output["prob"] = np.exp(output["logprob"]) |
|
return output |
|
|
|
|
|
def _openai_completion(model: str, system: str, prompt: str, response_model, logprobs: bool = True) -> str: |
|
messages = [ |
|
{"role": "system", "content": system}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
response = client.beta.chat.completions.parse( |
|
model=model, |
|
messages=messages, |
|
response_format=response_model, |
|
logprobs=logprobs, |
|
) |
|
output = {} |
|
output["content"] = response.choices[0].message.content |
|
output["output"] = response.choices[0].message.parsed.model_dump() |
|
if logprobs: |
|
output["logprob"] = sum(lp.logprob for lp in response.choices[0].logprobs.content) |
|
output["prob"] = np.exp(output["logprob"]) |
|
return output |
|
|
|
|
|
def _anthropic_completion(model: str, system: str, prompt: str, response_model) -> str: |
|
llm = ChatAnthropic(model=model).with_structured_output(response_model, include_raw=True) |
|
output = llm.invoke([("system", system), ("human", prompt)]) |
|
return {"content": output.raw, "output": output.parsed.model_dump()} |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
class ExplainedAnswer(BaseModel): |
|
""" |
|
The answer to the question and a terse explanation of the answer. |
|
""" |
|
|
|
answer: str = Field(description="The short answer to the question") |
|
explanation: str = Field(description="5 words terse best explanation of the answer.") |
|
|
|
model = "Anthropic/claude-3-5-sonnet-20240620" |
|
system = "You are an accurate and concise explainer of scientific concepts." |
|
prompt = "Which planet is closest to the sun in the Milky Way galaxy? Answer directly, no explanation needed." |
|
|
|
|
|
response = completion(model, system, prompt, ExplainedAnswer, logprobs=False) |
|
rprint(response) |
|
|
|
|
|
|