|
import json |
|
from typing import Any |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from datasets import Dataset |
|
from loguru import logger |
|
|
|
from components.model_pipeline.model_pipeline import PipelineInterface, PipelineState, PipelineUIState |
|
from display.formatting import styled_error |
|
from submission import submit |
|
from workflows.qb.multi_step_agent import MultiStepBonusAgent |
|
from workflows.qb.simple_agent import SimpleBonusAgent |
|
from workflows.structs import ModelStep, Workflow |
|
|
|
from . import commons |
|
from .plotting import ( |
|
create_bonus_confidence_plot, |
|
create_bonus_html, |
|
create_scatter_pyplot, |
|
update_tossup_plot, |
|
) |
|
from .utils import evaluate_prediction |
|
|
|
|
|
def process_bonus_results(results: list[dict]) -> pd.DataFrame: |
|
"""Process results from bonus mode and prepare visualization data.""" |
|
return pd.DataFrame( |
|
[ |
|
{ |
|
"Part": f"Part {r['part_number']}", |
|
"Correct?": "✅" if r["score"] == 1 else "❌", |
|
"Confidence": r["confidence"], |
|
"Prediction": r["answer"], |
|
"Explanation": r["explanation"], |
|
} |
|
for r in results |
|
] |
|
) |
|
|
|
|
|
def initialize_eval_interface(example: dict, model_outputs: list[dict]): |
|
"""Initialize the interface with example text.""" |
|
try: |
|
html_content = create_bonus_html(example["leadin"], example["parts"]) |
|
|
|
|
|
plot_data = create_bonus_confidence_plot(example["parts"], model_outputs) |
|
|
|
|
|
state = json.dumps({"parts": example["parts"], "outputs": model_outputs}) |
|
|
|
return html_content, plot_data, state |
|
except Exception as e: |
|
logger.exception(f"Error initializing interface: {e.args}") |
|
return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}" |
|
|
|
|
|
def validate_workflow(workflow: Workflow): |
|
"""Validate that a workflow is properly configured for the bonus task.""" |
|
if not workflow.steps: |
|
raise ValueError("Workflow must have at least one step") |
|
|
|
|
|
for step_id, step in workflow.steps.items(): |
|
validate_model_step(step) |
|
|
|
|
|
input_vars = set(workflow.inputs) |
|
if "leadin" not in input_vars or "part" not in input_vars: |
|
raise ValueError("Workflow must have 'leadin' and 'part' as inputs") |
|
|
|
output_vars = set(workflow.outputs) |
|
if not all(var in output_vars for var in ["answer", "confidence", "explanation"]): |
|
raise ValueError("Workflow must produce 'answer', 'confidence', and 'explanation' as outputs") |
|
|
|
|
|
def validate_model_step(model_step: ModelStep): |
|
"""Validate that a model step is properly configured for the bonus task.""" |
|
|
|
if not model_step.model or not model_step.provider: |
|
raise ValueError("Model step must have both model and provider specified") |
|
|
|
if model_step.call_type != "llm": |
|
raise ValueError("Model step must have call_type 'llm'") |
|
|
|
|
|
if model_step.temperature is None: |
|
raise ValueError("Temperature must be specified for LLM model steps") |
|
|
|
if not (0.0 <= model_step.temperature <= 1.0): |
|
raise ValueError(f"Temperature must be between 0.0 and 1.0, got {model_step.temperature}") |
|
|
|
|
|
input_field_names = {field.name for field in model_step.input_fields} |
|
if "leadin" not in input_field_names or "part" not in input_field_names: |
|
raise ValueError("Model step must have 'leadin' and 'part' input fields") |
|
|
|
|
|
output_field_names = {field.name for field in model_step.output_fields} |
|
required_outputs = {"answer", "confidence", "explanation"} |
|
if not all(out in output_field_names for out in required_outputs): |
|
raise ValueError("Model step must have all required output fields: answer, confidence, explanation") |
|
|
|
|
|
for field in model_step.output_fields: |
|
if field.name == "confidence" and field.type != "float": |
|
raise ValueError("The 'confidence' output field must be of type 'float'") |
|
|
|
|
|
class BonusInterface: |
|
"""Gradio interface for the Bonus mode.""" |
|
|
|
def __init__(self, app: gr.Blocks, dataset: Dataset, model_options: dict, defaults: dict): |
|
"""Initialize the Bonus interface.""" |
|
logger.info(f"Initializing Bonus interface with dataset size: {len(dataset)}") |
|
self.ds = dataset |
|
self.model_options = model_options |
|
self.app = app |
|
self.defaults = defaults |
|
self.output_state = gr.State(value="{}") |
|
self.render() |
|
|
|
def _render_model_interface(self, workflow: Workflow, simple: bool = True): |
|
"""Render the model interface.""" |
|
with gr.Row(): |
|
self.model_selector = commons.get_pipeline_selector([]) |
|
self.pipeline_interface = PipelineInterface( |
|
workflow, |
|
simple=simple, |
|
model_options=list(self.model_options.keys()), |
|
) |
|
|
|
def _render_qb_interface(self): |
|
"""Render the quizbowl interface.""" |
|
with gr.Row(elem_classes="bonus-header-row form-inline"): |
|
self.qid_selector = commons.get_qid_selector(len(self.ds)) |
|
self.run_btn = gr.Button("Run on Bonus Question", variant="secondary") |
|
|
|
self.question_display = gr.HTML(label="Question", elem_id="bonus-question-display") |
|
with gr.Row(): |
|
self.confidence_plot = gr.Plot( |
|
label="Part Confidence", |
|
format="webp", |
|
) |
|
|
|
self.results_table = gr.DataFrame( |
|
label="Model Outputs", |
|
value=pd.DataFrame(columns=["Part", "Correct?", "Confidence", "Prediction", "Explanation"]), |
|
) |
|
|
|
with gr.Row(): |
|
self.eval_btn = gr.Button("Evaluate", variant="primary") |
|
|
|
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True): |
|
with gr.Row(): |
|
self.model_name_input = gr.Textbox(label="Model Name") |
|
self.description_input = gr.Textbox(label="Description") |
|
with gr.Row(): |
|
gr.LoginButton() |
|
self.submit_btn = gr.Button("Submit", variant="primary") |
|
self.submit_status = gr.HTML(label="Submission Status") |
|
|
|
def render(self): |
|
"""Create the Gradio interface.""" |
|
self.hidden_input = gr.Textbox(value="", visible=False, elem_id="hidden-index") |
|
workflow = self.defaults["init_workflow"] |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
self._render_model_interface(workflow, simple=self.defaults["simple_workflow"]) |
|
|
|
with gr.Column(scale=1): |
|
self._render_qb_interface() |
|
|
|
self._setup_event_listeners() |
|
|
|
def get_new_question_html(self, question_id: int): |
|
"""Get the HTML for a new question.""" |
|
if question_id is None: |
|
logger.error("Question ID is None. Setting to 1") |
|
question_id = 1 |
|
try: |
|
question_id = int(question_id) - 1 |
|
if not self.ds or question_id < 0 or question_id >= len(self.ds): |
|
return "Invalid question ID or dataset not loaded" |
|
|
|
example = self.ds[question_id] |
|
leadin = example["leadin"] |
|
parts = example["parts"] |
|
return create_bonus_html(leadin, parts) |
|
except Exception as e: |
|
return f"Error loading question: {str(e)}" |
|
|
|
def get_user_submission_names(self, profile: gr.OAuthProfile | None) -> list[str]: |
|
if profile is None: |
|
logger.error("Authentication required. Please log in to view your submissions.") |
|
return [] |
|
model_names = submit.get_user_submission_names("bonus", profile) |
|
logger.info("Loaded model names: {model_names}") |
|
return gr.update(choices=model_names, value=None) |
|
|
|
def load_user_submission(self, model_name: str, profile: gr.OAuthProfile | None) -> PipelineState: |
|
if profile is None: |
|
return styled_error("Authentication required. Please log in to view your submissions.") |
|
submission = submit.load_submission(model_name, "tossup", profile) |
|
return PipelineState(workflow=submission.workflow, ui_state=PipelineUIState.from_workflow(submission.workflow)) |
|
|
|
def get_model_outputs(self, example: dict, pipeline_state: PipelineState): |
|
"""Get the model outputs for a given question ID.""" |
|
outputs = [] |
|
leadin = example["leadin"] |
|
workflow = pipeline_state.workflow |
|
if len(workflow.steps) > 1: |
|
agent = MultiStepBonusAgent(workflow) |
|
else: |
|
agent = SimpleBonusAgent(workflow) |
|
|
|
for i, part in enumerate(example["parts"]): |
|
|
|
part_output = agent.run(leadin, part["part"]) |
|
|
|
|
|
part_output["part_number"] = i + 1 |
|
part_output["score"] = evaluate_prediction(part_output["answer"], part["clean_answers"]) |
|
|
|
outputs.append(part_output) |
|
|
|
return outputs |
|
|
|
def single_run( |
|
self, |
|
question_id: int, |
|
pipeline_state: PipelineState, |
|
) -> tuple[str, Any, Any]: |
|
"""Run the agent in bonus mode.""" |
|
try: |
|
|
|
question_id = int(question_id - 1) |
|
if not self.ds or question_id < 0 or question_id >= len(self.ds): |
|
return "Invalid question ID or dataset not loaded", None, None |
|
|
|
example = self.ds[question_id] |
|
outputs = self.get_model_outputs(example, pipeline_state) |
|
|
|
|
|
html_content, plot_data, output_state = initialize_eval_interface(example, outputs) |
|
df = process_bonus_results(outputs) |
|
|
|
return ( |
|
html_content, |
|
gr.update(value=plot_data, label=f"Part Confidence on Question {question_id + 1}"), |
|
gr.update(value=output_state), |
|
gr.update(value=df, label=f"Model Outputs for Question {question_id + 1}"), |
|
) |
|
except Exception as e: |
|
import traceback |
|
|
|
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}" |
|
return error_msg, gr.skip(), gr.skip(), gr.skip() |
|
|
|
def evaluate(self, pipeline_state: PipelineState, progress: gr.Progress = gr.Progress()): |
|
"""Evaluate the bonus questions.""" |
|
try: |
|
|
|
if not self.ds or not self.ds.num_rows: |
|
return "No dataset loaded", None, None |
|
|
|
total_correct = 0 |
|
total_parts = 0 |
|
part_scores = [] |
|
part_numbers = [] |
|
|
|
for example in progress.tqdm(self.ds, desc="Evaluating bonus questions"): |
|
model_outputs = self.get_model_outputs(example, pipeline_state) |
|
|
|
for output in model_outputs: |
|
total_parts += 1 |
|
if output["score"] == 1: |
|
total_correct += 1 |
|
part_scores.append(output["score"]) |
|
part_numbers.append(output["part_number"]) |
|
|
|
accuracy = total_correct / total_parts |
|
df = pd.DataFrame( |
|
[ |
|
{ |
|
"Part Accuracy": f"{accuracy:.2%}", |
|
"Total Score": f"{total_correct}/{total_parts}", |
|
"Questions Evaluated": len(self.ds), |
|
} |
|
] |
|
) |
|
|
|
plot_data = create_scatter_pyplot(part_numbers, part_scores) |
|
return ( |
|
gr.update(value=df, label="Scores on Sample Set"), |
|
gr.update(value=plot_data, label="Part Scores on Sample Set"), |
|
) |
|
except Exception as e: |
|
logger.exception(f"Error evaluating bonus: {e.args}") |
|
return "Error evaluating bonus", None, None |
|
|
|
def submit_model( |
|
self, model_name: str, description: str, pipeline_state: PipelineState, profile: gr.OAuthProfile = None |
|
): |
|
"""Submit the model output.""" |
|
return submit.submit_model(model_name, description, pipeline_state.workflow, "bonus", profile) |
|
|
|
def _setup_event_listeners(self): |
|
|
|
|
|
gr.on( |
|
triggers=[self.app.load, self.qid_selector.change], |
|
fn=self.get_new_question_html, |
|
inputs=[self.qid_selector], |
|
outputs=[self.question_display], |
|
) |
|
|
|
gr.on( |
|
triggers=[self.app.load], |
|
fn=self.get_user_submission_names, |
|
outputs=[self.model_selector], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.run_btn.click( |
|
self.pipeline_interface.validate_workflow, |
|
inputs=[self.pipeline_interface.pipeline_state], |
|
outputs=[self.pipeline_interface.pipeline_state], |
|
).success( |
|
self.single_run, |
|
inputs=[ |
|
self.qid_selector, |
|
self.pipeline_interface.pipeline_state, |
|
], |
|
outputs=[ |
|
self.question_display, |
|
self.confidence_plot, |
|
self.output_state, |
|
self.results_table, |
|
], |
|
) |
|
|
|
self.eval_btn.click( |
|
fn=self.evaluate, |
|
inputs=[self.pipeline_interface.pipeline_state], |
|
outputs=[self.results_table, self.confidence_plot], |
|
) |
|
|
|
self.submit_btn.click( |
|
fn=self.submit_model, |
|
inputs=[ |
|
self.model_name_input, |
|
self.description_input, |
|
self.pipeline_interface.pipeline_state, |
|
], |
|
outputs=[self.submit_status], |
|
) |
|
self.hidden_input.change( |
|
fn=update_tossup_plot, |
|
inputs=[self.hidden_input, self.output_state], |
|
outputs=[self.confidence_plot], |
|
) |
|
|