Maharshi Gor
Adds quizbowl pipeline support for bonus and tossup questions
02b7dec
raw
history blame
10.7 kB
import json
import logging
import re
from collections import Counter
import matplotlib.pyplot as plt
import pandas as pd
def _make_answer_html(answer: str, clean_answers: list[str] = []) -> str:
clean_answers = [a for a in clean_answers if len(a.split()) <= 6 and a != answer]
additional_answers_html = ""
if clean_answers:
additional_answers_html = f"<span class='bonus-answer-text'> [or {', '.join(clean_answers)}]</span>"
return f"""
<div class='bonus-answer'>
<span class='bonus-answer-label'>Answer: </span>
<span class='bonus-answer-text'>{answer}</span>
{additional_answers_html}
</div>
"""
def _get_token_classes(confidence, buzz, score) -> str:
if confidence is None:
return "token"
elif not buzz:
return "token guess-point no-buzz"
else:
return f"token guess-point buzz-{score}"
def _create_token_tooltip_html(values) -> str:
if not values:
return ""
confidence = values.get("confidence", 0)
buzz = values.get("buzz", 0)
score = values.get("score", 0)
answer = values.get("answer", "")
answer_tokens = answer.split()
if len(answer_tokens) > 10:
k = len(answer_tokens) - 10
answer = " ".join(answer_tokens[:10]) + f"...[{k} more words]"
color = "#a3c9a3" if score else "#ebbec4" # Light green for correct, light pink for incorrect
return f"""
<div class="tooltip card" style="background-color: {color}; border-radius: 8px; padding: 12px; box-shadow: 2px 4px 8px rgba(0, 0, 0, 0.15);">
<div class="tooltip-content" style="font-family: 'Arial', sans-serif; color: #000;">
<h4 style="margin: 0 0 8px; color: #000;">πŸ’‘ Answer</h4>
<p style="font-weight: bold; margin: 0 0 8px; color: #000;">{answer}</p>
<p style="margin: 0 0 4px; color: #000;">πŸ“Š <b style="color: #000;">Confidence:</b> {confidence:.2f}</p>
<p style="margin: 0; color: #000;">πŸ” <b style="color: #000;">Status:</b> {"βœ… Correct" if score else "❌ Incorrect" if buzz else "🚫 No Buzz"}</p>
</div>
</div>
"""
def create_token_html(token: str, values: dict, i: int) -> str:
confidence = values.get("confidence", None)
buzz = values.get("buzz", 0)
score = values.get("score", 0)
# Replace non-word characters for proper display in HTML
display_token = f"{token} 🚨" if buzz else f"{token} πŸ’­" if values else token
if not re.match(r"\w+", token):
display_token = token.replace(" ", "&nbsp;")
css_class = _get_token_classes(confidence, buzz, score)
# Add tooltip if we have values for this token
tooltip_html = _create_token_tooltip_html(values)
token_html = f'<span id="token-{i}" class="{css_class}" data-index="{i}">{display_token}{tooltip_html}</span>'
# if i in marker_indices:
# token_html += "<span style='color: crimson;'>|</span>"
return token_html
def create_tossup_html(
tokens: list[str],
answer_primary: str,
clean_answers: list[str],
marker_indices: list[int] = [],
eval_points: list[tuple[int, dict]] = [],
) -> str:
"""Create HTML for tokens with hover capability and a colored header for the answer."""
try:
ep = dict(eval_points)
marker_indices = set(marker_indices)
html_tokens = []
for i, token in enumerate(tokens):
token_html = create_token_html(token, ep.get(i, {}), i + 1)
html_tokens.append(token_html)
answer_html = _make_answer_html(answer_primary, clean_answers)
return f"""
<div class='bonus-container'>
<div class='bonus-card'>
<div class='tossup-question'>
{"".join(html_tokens)}
</div>
{answer_html}
</div>
</div>
"""
except Exception as e:
logging.error(f"Error creating token HTML: {e}", exc_info=True)
return f"<div class='token-container'>Error creating tokens: {str(e)}</div>"
def create_bonus_html(leadin: str, parts: list[dict]) -> str:
# Create HTML for leadin and parts with answers
leadin_html = f"<div class='bonus-leadin'>{leadin}</div>"
parts_html = []
for i, part in enumerate(parts):
question_text = part["part"]
answer_html = _make_answer_html(part["answer_primary"], part["clean_answers"])
"<div class='bonus-part-number'>Part {i + 1}</div>"
part_html = f"""
<div class='bonus-part'>
<div class='bonus-part-text'><b>#{i + 1}.</b> {question_text}</div>
{answer_html}
</div>
"""
parts_html.append(part_html)
html_content = f"""
<div class='bonus-container'>
<div class='bonus-card'>
{leadin_html}
{"".join(parts_html)}
</div>
</div>
"""
# Format clean answers for the answer display
clean_answers = []
for i, part in enumerate(parts):
part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")
return html_content
def create_line_plot(eval_points: list[tuple[int, dict]], highlighted_index: int = -1) -> pd.DataFrame:
"""Create a Gradio LinePlot of token values with optional highlighting using DataFrame."""
try:
# Create base confidence data
data = []
# Add buzz points to the plot
for i, (v, b) in eval_points:
color = "#ff4444" if b == 0 else "#228b22"
data.append(
{
"position": i,
"value": v,
"type": "buzz",
"highlight": True,
"color": color,
}
)
if highlighted_index >= 0:
# Add vertical line for the highlighted token
data.extend(
[
{
"position": highlighted_index,
"value": 0,
"type": "hover-line",
"color": "#000000",
"highlight": True,
},
{
"position": highlighted_index,
"value": 1,
"type": "hover-line",
"color": "#000000",
"highlight": True,
},
]
)
return pd.DataFrame(data)
except Exception as e:
logging.error(f"Error creating line plot: {e}", exc_info=True)
# Return an empty DataFrame with the expected columns
return pd.DataFrame(columns=["position", "value", "type", "highlight", "color"])
def create_tossup_confidence_pyplot(
tokens: list[str], eval_points: list[tuple[int, dict]], highlighted_index: int = -1
) -> plt.Figure:
"""Create a pyplot of token values with optional highlighting."""
plt.style.use("ggplot") # Set theme to grid paper
fig = plt.figure(figsize=(11, 5)) # Set figure size to 11x5
ax = fig.add_subplot(111)
x = [0]
y = [0]
for i, v in eval_points:
x.append(i + 1)
y.append(v["confidence"])
ax.plot(x, y, "o--", color="#4698cf")
for i, v in eval_points:
if not v["buzz"]:
continue
confidence = v["confidence"]
color = "green" if v["score"] else "red"
ax.plot(i + 1, confidence, "o", color=color)
if i >= len(tokens):
print(f"Token index {i} is out of bounds for n_tokens: {len(tokens)}")
ax.annotate(f"{tokens[i]}", (i + 1, confidence), textcoords="offset points", xytext=(0, 10), ha="center")
if highlighted_index >= 0:
# Add light vertical line for the highlighted token from 0 to 1
ax.axvline(x=highlighted_index + 1, color="#ff9900", linestyle="--", ymin=0, ymax=1)
ax.set_title("Buzz Confidence")
ax.set_xlabel("Token Index")
ax.set_ylabel("Confidence")
ax.set_xticks(x)
ax.set_xticklabels(x)
return fig
def create_scatter_pyplot(token_positions: list[int], scores: list[int]) -> plt.Figure:
"""Create a scatter plot of token positions and scores."""
plt.style.use("ggplot")
fig = plt.figure(figsize=(11, 5))
ax = fig.add_subplot(111)
counts = Counter(zip(token_positions, scores))
X = []
Y = []
S = []
for (pos, score), size in counts.items():
X.append(pos)
Y.append(score)
S.append(size * 20)
ax.scatter(X, Y, color="#4698cf", s=S)
return fig
def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]) -> plt.Figure:
"""Create confidence plot for bonus parts."""
plt.style.use("ggplot")
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111)
# Plot confidence for each part
x = range(1, len(parts) + 1)
confidences = [output["confidence"] for output in model_outputs]
scores = [output["score"] for output in model_outputs]
# Plot confidence bars
bars = ax.bar(x, confidences, color="#4698cf")
# Color bars based on correctness
for i, score in enumerate(scores):
bars[i].set_color("green" if score == 1 else "red")
ax.set_title("Part Confidence")
ax.set_xlabel("Part Number")
ax.set_ylabel("Confidence")
ax.set_xticks(x)
ax.set_xticklabels([f"Part {i}" for i in x])
return fig
def update_tossup_plot(highlighted_index: int, state: str) -> pd.DataFrame:
"""Update the plot when a token is hovered; add a vertical line on the plot."""
try:
if not state or state == "{}":
logging.warning("Empty state provided to update_plot")
return pd.DataFrame()
highlighted_index = int(highlighted_index) if highlighted_index else None
logging.info(f"Update plot triggered with token index: {highlighted_index}")
data = json.loads(state)
tokens = data.get("tokens", [])
values = data.get("values", [])
if not tokens or not values:
logging.warning("No tokens or values found in state")
return pd.DataFrame()
# Create updated plot with highlighting of the token point
# plot_data = create_line_plot(values, highlighted_index)
plot_data = create_tossup_confidence_pyplot(tokens, values, highlighted_index)
return plot_data
except Exception as e:
logging.error(f"Error updating plot: {e}")
return pd.DataFrame()